7.5: Homogeneous Linear Systems with Constant
Coefficients

We consider here a homogeneous system of n first order linear equations
with constant, real coefficients:

!
X =% +a,X +...+a, X
Xy = 8y X + 8y Xy +...+ 8y, X

/
X, =ad X, +a,X, +...+a, X,

This system can be written as x' = Ax, where

X (t) dy &, -
Xz(t) Ay 8y Gy,

X(t) =

Xm(t) ady QA - Ay



Equilibrium Solutions

Note that if n=1, then the system reduces to

X =ax = x(t)=e*

Recall that x = 0 is the only equilibrium solution if a = 0.

Further, x =0 is an asymptotically stable solution if a <0, since other
solutions approach x =0 iIn this case.

Also, x =0 is an unstable solution if a >0, since other solutions depart
from x = 0 in this case.

For n> 1, equilibrium solutions are similarly found by solving Ax = 0.
We assume detA =0, sothat x =0 is the only solution. Determining
whether x =0 is asymptotically stable or unstable is an important question
here as well.



Phase Plane

 When n =2, then the system reduces to X, =8, X +3a,,%,
/
Xo = Ay% T X,

This case can be visualized in the x,x,-plane, which is called the phase plane.

In the phase plane, a direction field can be obtained by evaluating Ax at many
points and plotting the resulting vectors, which will be tangent to solution

vectors.

A plot that shows representative solution trajectories is called a phase portrait.

Examples of phase planes, directions fields, and phase portraits will be given
later in this section.



Solving Homogeneous System

To construct a general solution to X' = Ax, assume a solution of the form,

X = Ee", where the exponent r and the constant vector & are to be determined.
Substituting x = e into X' = AX, we obtain

rée" =Age" < rE=Af < (A-rl)&=0

Thus to solve the homogeneous system of differential equations x'= Ax, we
must find the eigenvalues and eigenvectors of A.

Therefore x =E&e™ isasolution of x' = Ax provided that r isan eigenvalue
and & is an eigenvector of the coefficient matrix A.



Example 1 (1 of 2)

0 -3 '

2 0 -
* Find the general solution of the system X' = [ j X, 5 2X1
X, = —3X,

* The most important feature of this system 1s that the coefficient matrixis a
diagonal matrix. Thus, by writing the system in scalar form, we obtain

x’l — 2:/“1J x,2 — —3x2

* Each of these equations involves only one of the unknown variables, so we
can solve the two equations separately. In this way we find that

X () =ce”, x(t)=ce”

where ¢, and ¢, are arbitrary constants.



Example 1 (2 of 2)

* Then, by writing the solution 1n vector form, we have

C eZt eZt O 1 O )
e o[ el o o)< )

« Now we define the two solutions x( and x® so that

xD () = ((1)) et x@ () = ((1)) osl

* The Wronskian of these solutions 1s

1 «@pn et 0
W[x , X ](t) 0

=€
e—3t

which is never zero. Therefore, x( and x() form a fundamental set of
solutions.



Example 2: Direction Field (1 of 9)

Consider the homogeneous equation X' = AX :

A direction field for this system is given below.

Ee™ in for x, and rewriting system

Substituting x =

=0, we obtain

(A-rl)g
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Example 2: Eigenvalues (2 of 9)

Our solution has the form x = €e™, where r and & are found by solving
1I-r 1 &) (O
4 1-r &) (o
Recalling that this is an eigenvalue problem, we determine r by solving

det(A-rl) = 0:

1-r
=(-r)°’-4=r"-2r-3=(r-3)(r+1)

4 1-r

Thusr,=3and r, = -1.



Example 2: First Eigenvector (3 of 9)

» Eigenvector forr, = 3: Solve
acne-o = (7l Ha)= (0 2JE o
4 1-3)\¢&) \0 4 -2)¢&) (0
by row reducing the augmented matrix:

2 10} (1 -1/2 0) (1 -1/2 0} 1& -1/2& =0
—> —> —>
4 -2 0) 4 =20 (o 00 0&, =0

1/2 1/2 1
— &Y = 2 | c , ¢ arbitrary — choose £ =
S 1 2



Example 2: Second Eigenvector (4 of 9)

» Eigenvector forr, =-1: Solve

im0 = [0 )= (0 2JE )G

by row reducing the augmented matrix:

2 1 0) (1 1/2 0) (1 1/2 0) 1& +1/2& =0
— > >
4 20) (4 20 lo 00 0&, =0

-1/2 -1/2 1
—&% = 2| C , ¢ arbitrary — choose £? =
S2 1l _2



Example 2: General Solution (5 of 9)

The corresponding solutions x =&e™ of x'=Ax are

o | Lt yom 1l
X (t)_(zje , X (t)_(_zje

The Wronskian of these two solutionsis — w | x®,x® |(t) = © °
2¢” —2¢™
=—4e %0

Thus x®) and x are fundamental solutions, and the general solution of x' = Ax
IS

1 1
X(t) =cxP () +e,x2(t) = c{z)e3t +c2[ Zjet

(Question)  How do we sketch the solution x in the phase plane?



Example 2: Phase Plane for x (6 of 9)

To visualize solution, consider first x = ¢,x:

X 1
X (t) =( 1j = cl( je‘“ & X =ce”, x,=2ce”
X, 2

X
Now x =ce”, x, =2ce” < =t o X, = 2X,

C, 2¢

Thus x® lies along the straight line x, = 2x,, which is the line through
origin in direction of first eigenvector &%

If solution is trajectory of particle, with position given by (xy, x,), then itis
in Q1 when ¢, >0, and in Q3 when ¢, <O0.

In either case, particle moves away from origin as t increases.



Example 2: Phase Plane for x® (7 of 9)

Next, consider x = ¢,x®:

1
X (t) = (le =, ( ]e‘t & X =Ce, X,=-2c,e"
X, —2

Then x@ lies along the straight line x, = -2x,, which is the line through origin
in direction of 2nd eigenvector &)

If solution is trajectory of particle, with position given by (x;, X,), then it is in
Q4 when ¢, >0, and in Q2 when ¢, < 0.

In either case, particle moves towards origin as t increases.



Example 2:
Phase Plane for General Solution (8 of 9)

1 1
The general solutionis x = ¢, x® + ¢,x@:  X(t) = c{zje?’t +c2( Z]e‘t
As t — oo, ¢,xb is dominant and ¢,x® becomes negligible. Thus, for ¢, = 0,

all solutions asymptotically approach the line x, = 2x, ast — .

Similarly, for c, =0, all solutions asymptotically approach the line x, = -2x,
ast— - oo,

The origin is a saddle point, and is unstable. See graphs.




Example 2:
Time Plots for General Solution (9 of 9)

The general solution is x = ¢,x® + ¢,x(2):
1 1 X, (t ce’ +c,e’
x(t)=c,| _|e* +c, ! o (1) _ & " :
2 -2 X, (t) 2ce” —2c,e”

As an alternative to phase plane plots, we can graph x, or x, as a function of t.
A few plots of x, are given below.

Note that when ¢, =0, x,(t)=c,et—>0ast— .
Otherwise, x,(t) = c,e3 + c,et grows unbounded as t — oo.

Graphs of x, are similarly obtained.
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Consider the homogeneous equation X' = AX :

A direction field for this system is given below.

Example 3: Direction Field (1 of 9)

!

_3 \EX
V2. -2

Substituting x =&e™ in for x, and rewriting systemas (A-rl)é =0, we

obtain
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Example 3: Eigenvalues (2 of 9)

Our solution has the form x = &e™, where r and & are found by solving
R
2 —2-r )\ & 0

Recalling that this is an eigenvalue problem, we determine r by solving
det(A-rl) = 0:

_3-r 2

N A =(-3-nN(-2-r)-2=r"+5r+4=(r+1)(r+4)

Thusr,=-1landr, = -4.



Example 3: First Eigenvector (3 of 9)

» Eigenvector for r, =-1: Solve

e (5 A0 (& SEHG)

by row reducing the augmented matrix:

(—2 2 oj_)( 1 272 o}_}[1 _J212 oj
J2 -1 0 J2 10 0 0 0

V21 252) — choose &Y = (

N ;;(1) — (
&2

1
s



Example 3: Second Eigenvector (4 of 9)

Eigenvector for r, = -4: Solve
_ —3+4 \/E 51 _ 0 1 \/E 51 . 0
L e R E R

by row reducing the augmented matrix:

&4 S

J2 2 0 0 00

—> choose @ = (_\E]



Example 3: General Solution (5 of 9)

The corresponding solutions x = &e™ of x'= Ax are

@ _ 1 —t (2) _ _\/E -4t
X (t)—(ﬁ]e , X (t)—( Je

The Wronskian of these two solutions is

e —2e*
J2e e ™

W{x® x@ kt) = =3¢ =0

Thus x® and x@ are fundamental solutions, and the general solution

of X'=AX IS
1 2
X(t :CX(l) t)+cC X(Z) t)=¢c¢C e_t_|_C e—4t



Example 3: Phase Plane for x (6 of 9)

To visualize solution, consider first x = ¢, x®:

1
x®(t) = (fj =C, ( \/5] e! o x=ce", x,=+2ce™
2

] ) XX
Now X =ce’', x,=+/2ce" < et="L= 22 & X, =/2%,
¢, ¢

Thus x@ lies along the straight line x, = 22x,, which is the line through
origin in direction of first eigenvector &)

If solution is trajectory of particle, with position given by (x;, X,), then it is in
Q1 when c, >0, and in Q3 when ¢, <O0.

In either case, particle moves towards origin as t increases.



Example 3: Phase Plane for x® (7 of 9)

Next, consider x = ¢,x):

X —V2] _ ] )
X2 (t) :[le:c{ Je o x =-2c,e™, x,=ce™

2 1

Then x@ lies along the straight line x, = -2 x,, which is the line through
origin in direction of 2nd eigenvector @)

If solution is trajectory of particle, with position given by
(X1, X5), then it is in Q4 when ¢, > 0, and in Q2 when ¢, <O0.

In either case, particle moves towards origin as t increases.



Example 3:
Phase Plane for General Solution (8 of 9)

The general solution is x = ¢, x® + ¢,x):

1) . 1 —t (2) _ _\/E —4t
X (t)_(ﬁje , X (t)_[ Je

As t — oo, ¢,x is dominant and c,x(® becomes negligible. Thus, for ¢, = 0,

all solutions asymptotically approach origin along the line x, = 2*%2x, ast —
00,

Similarly, all solutions are unbounded as t — - oo.

The origin is a node, and is asymptotically stable.




Example 3:
Time Plots for General Solution (9 of 9)

 The general solution is x = ¢, xY + ¢, x():
1) —J2) . x (1)) (ce'=+2ce™
x(t)=c e'+cC e ™ =( 1 2
® 1(ﬁj " 2( 1) = (Xz (t)] (ﬁcle‘ +cze‘”]

 As an alternative to phase plane plots, we can graph x, or x, as a
function of t. A few plots of x, are given below.

» Graphs of x, are similarly obtained.
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2 X 2 Case:

Real Eigenvalues, Saddle Points and Nodes

« The previous two examples demonstrate the two main cases for a 2 x 2 real
system with real and different eigenvalues:

— Both eigenvalues have opposite signs, in which case origin is a saddle

point and is unstable.

— Both eigenvalues have the same sign, in which case origin is a node, and
Is asymptotically stable if the eigenvalues are negative and unstable if
the eigenvalues are positive.

xM(z)




Eigenvalues, Eigenvectors
and Fundamental Solutions

In general, for an n x n real linear system X' = Ax:

— Case 1: All eigenvalues are real and different from each other.
— Case 2: Some eigenvalues occur in complex conjugate pairs.
— Case 3: Some eigenvalues are repeated.

If eigenvalues ry,..., r, are real & different, then there are n corresponding
linearly independent eigenvectors ED), ..., M. The associated solutions of

X'=Ax are
x D (t) _ %(Derlt . .’X(n) (t) _ g(n)ernt

Using Wronskian, it can be shown that these solutions are linearly
independent, and hence form a fundamental set of solutions. Thus general

solution is
X=cEYe™ +...+c &Me™



Hermitian Case: Eigenvalues, Eigenvectors &
Fundamental Solutions

If A is an n x n Hermitian matrix (real and symmetric), then all eigenvalues
r.,..., I, are real, although some may repeat.

In any case, there are n corresponding linearly independent and orthogonal
eigenvectors €, ..., £, The associated solutions of x' = Ax are

x ('[) _ g(l)erlt . .’X(n) (t) _ g(n)ernt

and form a fundamental set of solutions.



Example 4: Hermitian Matrix (1 of 3)

Consider the homogeneous equation X' = Ax below.

0
X' =1
1

, O K
o
X

The eigenvalues were found previously in Ch 7.3, and were:
rn=2,r,=-land ry = -1.

Corresponding eigenvectors: 1 1 0

(::(1) =1}, g(Z) =| 0], §(3) - 1



Example 4. General Solution (2 of 3)

* The fundamental solutions are

1 1 0
xW=[1]* x@=| 0", x®P=]| 1"
1 -1 -1

with general solution

1 1 0
x=c|lle*+c,| Olet+c,| 1™
1 -1 -1



Example 4. General Solution Behavior (3 of 3)

The general solution is x = ¢, x® + ¢,x®@ + ¢ xO):

1 1 0
x=c|ll*+c,| Ol +c,| 1™
1 -1 -1

As t — oo, ¢,x is dominant and ¢,x , c,x® become negligible.

Thus, for ¢, # 0, all solutions x become unbounded as t — oo,
while for ¢, =0, all solutions x — 0 ast — oo.

The initial points that cause ¢, = 0 are those that lie in plane determined by &®?
and E®). Thus solutions that start in this plane approach origin as t — oo.



Complex Elgenvalues and Fundamental
Solutions

 If some of the eigenvalues r,,..., r, occur in complex conjugate pairs, but
otherwise are different, then there are still n corresponding linearly
independent solutions

x (t) _ g(l)erlt . .’X(n) (t) _ g(n)ernt’

which form a fundamental set of solutions. Some may be complex-valued, but
real-valued solutions may be derived from them. This situation will be
examined in Ch 7.6.

 If the coefficient matrix A is complex, then complex eigenvalues need not
occur in conjugate pairs, but solutions will still have the above form (if the
eigenvalues are distinct) and these solutions may be complex-valued.



Repeated Eigenvalues and Fundamental Solutions

If some of the eigenvalues r,,..., r, are repeated, then there may not be n
corresponding linearly independent solutions of the form

x (t) _ &(1)er1t . .’X(n) (t) _ g(n)ernt

In order to obtain a fundamental set of solutions, it may be necessary to seek
additional solutions of another form.

This situation is analogous to that for an nth order linear equation with
constant coefficients, in which case a repeated root gave rise solutions of the

form
e te" t%e" ...

This case of repeated eigenvalues is examined in Section 7.8.



