
7.5: Homogeneous Linear Systems with Constant 

Coefficients

• We consider here a homogeneous system of  n first order linear equations 

with constant, real coefficients:

• This system can be written as   x' = Ax,   where
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Equilibrium Solutions

• Note that if   n = 1, then  the system reduces to

• Recall that x = 0 is the only equilibrium solution if a  0.

• Further, x = 0 is an asymptotically stable solution if a < 0, since other 

solutions approach x = 0 in this case.  

• Also, x = 0 is an unstable solution if a > 0, since other solutions depart 

from x = 0 in this case. 

• For n > 1, equilibrium solutions are similarly found by solving Ax = 0. 

We  assume  detA  0, so that x = 0 is the only solution. Determining 

whether x = 0 is asymptotically stable or unstable is an important question 

here as well. 
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Phase Plane

• When   n = 2, then the system reduces to

• This case can be visualized in the x1x2-plane, which is called the  phase plane.  

• In the phase plane, a direction field can be obtained by evaluating Ax at many 

points and plotting the resulting vectors, which will be tangent to solution 

vectors. 

• A plot that shows representative solution trajectories is called a phase portrait.

• Examples of phase planes, directions fields, and phase portraits will be given 

later in this section.  
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Solving Homogeneous System

• To construct a general solution to x' = Ax, assume a solution of the form, 

x = ert, where the exponent r and the constant vector  are to be determined. 

• Substituting x = ert into x' = Ax, we obtain

• Thus to solve the homogeneous system of differential equations x' = Ax, we 

must find the eigenvalues and eigenvectors of A.

• Therefore x = ert is a solution of x' = Ax provided that r is an eigenvalue 

and  is an eigenvector of the coefficient matrix A.
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Example 1 (1 of 2)

2 0
,

0 3

 
   

 
x x 1 1

2 2

2

3

x x

x x

  
    

2 3

1 1 2 2( ) ,      ( )t tx t c e x t c e 



Example 1 (2 of 2)
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Example 2: Direction Field   (1 of 9)

• Consider the homogeneous equation x' = Ax :

• A direction field for this system is given below.

• Substituting x = ert in for x, and rewriting system 

as  (A-rI) = 0, we obtain
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Example 2: Eigenvalues (2 of 9)

• Our solution has the form x = ert, where r and  are found by solving 

• Recalling that this is an eigenvalue problem, we determine r by solving 

det(A-rI) = 0:  

• Thus r1 = 3 and r2 = -1.   
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Example 2: First Eigenvector (3 of 9)

• Eigenvector for r1 = 3: Solve

by row reducing the augmented matrix:
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Example 2: Second Eigenvector (4 of 9)

• Eigenvector for r2 = -1: Solve

by row reducing the augmented matrix:
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Example 2: General Solution (5 of 9)

• The corresponding solutions   x = ert of   x' = Ax are

• The Wronskian of  these two solutions is

• Thus x(1) and x(2) are fundamental solutions, and the general solution of  x' = Ax

is

(Question)     How do we sketch the solution  x(1) in the phase plane?
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Example 2: Phase Plane for x(1) (6 of 9)

• To visualize solution, consider first x = c1x
(1):

• Now 

• Thus  x(1) lies along the straight line x2 = 2x1, which is the line through 

origin in direction of first eigenvector  (1)

• If solution is trajectory of particle, with position given by (x1, x2), then it is 

in Q1 when c1 > 0, and in Q3 when c1 < 0.  

• In either case, particle moves away from origin as t increases.  
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Example 2: Phase Plane for x(2) (7 of 9)

• Next, consider x = c2x
(2):

• Then x(2) lies along the straight line x2 = -2x1, which is the line through origin 

in direction of 2nd eigenvector (2)

• If solution is trajectory of particle, with position given by (x1, x2), then it is in 

Q4 when c2 > 0, and in Q2 when c2 < 0.  

• In either case, particle moves towards origin as t increases.  
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Example 2: 

Phase Plane for General Solution   (8 of 9)

• The general solution is   x = c1x
(1) + c2x

(2):  

• As t , c1x
(1) is dominant and c2x

(2) becomes negligible. Thus, for c1  0,

all solutions asymptotically approach the line x2 = 2x1 as t . 

• Similarly, for  c2  0, all solutions asymptotically approach the line x2 = -2x1

as t  - .

• The origin is a saddle point,  and is unstable.  See graphs.
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Example 2: 

Time Plots for General Solution   (9 of 9)

• The general solution is x = c1x
(1) + c2x

(2):  

• As an alternative to phase plane plots, we can graph x1 or x2 as a function of t.  

A few plots of x1 are given below.  

• Note that when c1 = 0, x1(t) = c2e
-t  0 as t . 

Otherwise, x1(t) = c1e
3t + c2e

-t grows unbounded as t . 

• Graphs of x2  are similarly obtained.
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Example 3:  Direction Field   (1 of 9)

• Consider the homogeneous equation x' = Ax :

• A direction field for this system is given below.

• Substituting   x = ert in for x,  and rewriting system as   (A-rI) = 0,   we 

obtain
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Example 3: Eigenvalues (2 of 9)

• Our solution has the form  x = ert,  where  r and   are found by solving 

• Recalling that this is an eigenvalue problem, we determine r by solving 

det(A-rI) = 0:  

• Thus r1 = -1 and r2 = -4.   
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Example 3: First Eigenvector (3 of 9)

• Eigenvector for  r1 = -1: Solve

by row reducing the augmented matrix:
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Example 3: Second Eigenvector (4 of 9)

• Eigenvector for r2 = -4: Solve

by row reducing the augmented matrix:
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Example 3: General Solution (5 of 9)

• The corresponding solutions  x = ert of   x' = Ax are

• The  Wronskian of these two solutions is

• Thus  x(1) and  x(2) are fundamental solutions, and the  general solution

of    x' = Ax is
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Example 3: Phase Plane for x(1) (6 of 9)

• To visualize solution, consider first x = c1x
(1):

• Now 

• Thus x(1) lies along the straight line x2 = 2½ x1, which is the line through 

origin in direction of first eigenvector (1)

• If solution is trajectory of particle, with position given by (x1, x2), then it is in 

Q1 when c1 > 0, and in Q3 when c1 < 0.  

• In either case, particle moves towards origin as t increases.  
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Example 3: Phase Plane for x(2) (7 of 9)

• Next, consider x = c2x
(2):

• Then x(2) lies along the straight line x2 = -2½ x1, which is the line through 

origin in direction of 2nd eigenvector (2)

• If solution is trajectory of particle, with position given by 

(x1, x2), then it is in Q4 when c2 > 0, and in Q2 when c2 < 0.  

• In either case, particle moves towards origin as t increases.  
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Example 3: 

Phase Plane for General Solution   (8 of 9)

• The general solution is x = c1x
(1) + c2x

(2):  

• As t , c1x
(1) is dominant and c2x

(2) becomes negligible. Thus, for c1  0,

all solutions asymptotically approach origin along the line x2 = 2½ x1 as t 

. 

• Similarly, all solutions are unbounded as t  - . 

• The origin is a node,  and  is  asymptotically stable.  
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Example 3: 

Time Plots for General Solution   (9 of 9)

• The general solution is x = c1x
(1) + c2x

(2):  

• As an alternative to phase plane plots, we can graph x1 or x2 as a 

function of t.  A few plots of x1 are given below.  

• Graphs of x2 are similarly obtained.
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2 x 2 Case:  
Real Eigenvalues, Saddle Points and Nodes

• The previous two examples demonstrate the two main cases for a 2 x 2 real 

system with real and different eigenvalues:

– Both eigenvalues have opposite signs, in which case origin is a saddle 

point and is unstable.

– Both eigenvalues have the same sign, in which case origin is a node, and 

is asymptotically stable if the eigenvalues are negative and unstable if 

the eigenvalues are positive.



Eigenvalues, Eigenvectors 

and Fundamental Solutions

• In general, for an n x n real linear system  x' = Ax:

– Case 1:  All eigenvalues are real and different from each other.

– Case 2:  Some eigenvalues occur in complex conjugate pairs.

– Case 3:  Some eigenvalues are repeated.

• If eigenvalues r1,…, rn are real & different, then there are n corresponding 

linearly independent eigenvectors (1),…, (n).  The associated solutions of   

x' = Ax are

• Using Wronskian, it can be shown that these solutions are linearly 

independent, and hence form a fundamental set of solutions.  Thus general 

solution is 
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Hermitian Case: Eigenvalues, Eigenvectors & 

Fundamental Solutions

• If A is an n x n Hermitian matrix (real and symmetric), then all eigenvalues 

r1,…, rn are real, although some may repeat.  

• In any case, there are n corresponding linearly independent and orthogonal 

eigenvectors (1),…, (n). The associated solutions of x' = Ax are

and form a fundamental set of solutions.
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Example 4: Hermitian Matrix   (1 of 3)

• Consider the homogeneous equation x' = Ax below.

• The eigenvalues were found previously in Ch 7.3, and were: 

r1 = 2, r2 = -1 and r3 = -1.  

• Corresponding eigenvectors: 
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Example 4:  General Solution (2 of 3)

• The fundamental solutions are 

with general solution  
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Example 4: General Solution Behavior  (3 of 3)

• The general solution is x = c1x
(1) + c2x

(2) + c3x
(3):

• As t , c1x
(1) is dominant and c2x

(2) , c3x
(3) become negligible. 

• Thus, for c1  0, all solutions x become unbounded as t ,

while for c1 = 0, all solutions x  0 as t .

• The initial points that cause c1 = 0 are those that lie in plane determined by (2)

and (3).  Thus solutions that start in this plane approach origin as t .
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Complex Eigenvalues and Fundamental 

Solutions

• If some of the eigenvalues r1,…, rn occur in complex conjugate pairs, but 

otherwise are different, then there are still n corresponding linearly 

independent solutions

which form a fundamental set of solutions.  Some may be complex-valued, but 

real-valued solutions may be derived from them.  This situation will be 

examined in Ch 7.6.

• If the coefficient matrix A is complex, then complex eigenvalues need not 

occur in conjugate pairs, but solutions will still have the above form (if the 

eigenvalues are distinct) and these solutions may be complex-valued. 
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Repeated Eigenvalues and Fundamental Solutions

• If some of the eigenvalues r1,…, rn are repeated, then there may not be n

corresponding linearly independent solutions of the form

• In order to obtain a fundamental set of solutions, it may be necessary to seek 

additional solutions of another form. 

• This situation is analogous to that for an nth order linear equation with 

constant coefficients, in which case a repeated root gave rise solutions of the 

form 

This case of repeated eigenvalues is examined in Section 7.8. 
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