7.6: Complex Eigenvalues

» We consider again a homogeneous system of n first order linear equations with
constant, real coefficients,
X =% +a,X +...+a, X
Xy =8y X +8,,%X, +...4+ 8, X

2n’™n

/
X =a X +a,X +...+a X

nn“'n?

and thus the system can be written as x' = Ax, where

X(t) Q,; 8, - &,

Xz(t) dyy Ay

X(t) = A= T

Xn (t) anl an2 Tt a

nn



Conjugate Eigenvalues and Eigenvectors

We know that x = &e™ is a solution of x'= Ax, provided r is an eigenvalue
and & is an eigenvector of A.

The eigenvalues r,..., r, are the roots of det(A-rl) =0, and the
corresponding eigenvectors satisfy (A-rl)§ = 0.

If A is real, then the coefficients in the polynomial equation det(A-rl) =0
are real, and hence any complex eigenvalues must occur in conjugate pairs.
Thus if r,=A+iu Is an eigenvalue, then the second solution is
r2 - ﬂ« = iﬂ.

The corresponding eigenvectors EM), E@ are conjugates also.
To see this, recall A and | have real entries, and hence

(A-rlE® =0 = (A-11)e”Y =0 = (A-r,1)g?® =0



Conjugate Solutions

« |t follows from the previous slide that the solutions

X® —gWett  y@ _ g@gn

corresponding to these eigenvalues and eigenvectors are
conjugates as well, since

X2 —g@ent — EWgit — g



jx

1

-1/2
Ee™ infor x, and rewriting system as

~1/2
0, we obtain

-1

A direction field for this system is given below.

Substituting x
(A-rl)&

4

Example 1: Direction Field (1 of 7)
X

Consider the homogeneous equation X' = Ax below:
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Example 1: Complex Eigenvalues (2 of 7)

* \We determine r by solving det(A-rl) =0. Now

=Gw4j2f+1=r2+r+g

~-1/2—r 1
-1 ~1/2—-r

2 o
. Thus r:—li\/l ~4(5/4) 12 1.

2 2 2

» Therefore the eigenvaluesare r;=-1/2+1 and r,=-1/2-1.



Example 1: First Eigenvector (3 of 7)

Eigenvector for r; = -1/2 + i: Solve

ko= (C57 L S

=3 el = (Lo

by row reducing the augmented matrix:

SN

—> (1 ! Oj N é(l):(_ié] —> choose é.‘;(l):(
0 0 0 g,

)



Example 1: Second Eigenvector (4 of 7)

Eigenvector for r; =-1/2 - i: Solve

S BRI

= [ e = TEHC)

by row reducing the augmented matrix:

(1 - Oj . (1 i O] . g(z):(i@] R g(Z):( }j
-1 i 0 0 0 0 £ i



. —-1/2 1
Real valued solutions x’z[ y _m}:

The two solutions: x4y _ g2 [j ot X @ (t) =2 ( 1 jeit
i) —i

Remember €' =cost+isint

—sint —icost

Then X0 ) = g2 cost+isint
—sint+icost

X @ (t) = e”z[ cost—isint j

%(X ® (t)+ X (2) (t)) _pt/2 ( cost j, i(x @ (t)— X (2) (t)) _ ot (Sintj

—sint 21 cost

The two real valued solutions:

cost sint
U(t) — e—t/2 _ : V(t) — e_t/2
—sint cost



Example 1: General Solution (5 of 7)

The corresponding solutions x = &e™ of X'=Ax are

(1 0) . | cost
ut)=e™"?|| ~|cost—| |sint| =e"? ]

0 1 | —sint

(1 0 1 sint
v(t)=e"?| " |sint+| |cost| =e"?

(0 1 | cost

The Wronskian of these two solutions is

e ?cost e Y?sint

W [x(l) X9 ](t) = —e 20

—e2sint e?cost

Thus u(t) and v(t) are real-valued fundamental solutions of x' = Ax, with
general solution X = C,U + C,V.



Example 1: Phase Plane (6 of 7)

Given below is the phase plane plot for solutions x, with
R e 2 cost e e 2sint
X,) —e"%sint) ‘le"?cost

Each solution trajectory approaches origin along a spiral path as t — oo, since
coordinates are products of decaying exponential and sine or cosine factors.

The graph of u passes through (1,0),
since u(0) = (1,0). Similarly, the
graph of v passes through (0,1). /_\Zw

The origin is a spiral point, and K— e

Is asymptotically stable. NS




Example 1: Time Plots (7 of 7)

* The general solution is X = c,U + C,V:
‘o x({t)) [ ce"*cost+c,esint
X,(t)) (—ce™?sint+c,e™*cost

» As an alternative to phase plane plots, we can graph x, or x, as
a function of t. A few plots of x, are

given below, each one a decaying

oscillation as t — oo. %q\

g e —

& 4= |



General Solution

To summarize, suppose r, = A+1iu, r,=A-Iiy, andthat r,,...,r, areall
real and distinct eigenvalues of A. Let the corresponding eigenvectors be

gV =a+ib, £¥ =a-ib, £¥,&¥,. ., g™

Then the general solution of X' = AX is

X = cu(t) +c,v(t) +c.g¥e" +.. .+ EMe™

WIETE u(t) =e* (acos ut—bsin ut), v(t) =€ (asin ut-+bcos ut)



Real-Valued Solutions

« Thus for complex conjugate eigenvalues r, and r, , the corresponding
solutions xM) and x(@ are conjugates also.

« To obtain real-valued solutions, use real and imaginary parts of either x( or
X, To see this, let &) =a + i b. Then

x® = gWell — (3 +ib)e* (cos ut +isin ut)
—e*'(acos ut—bsin ut)+ie*(asin ut+bcos ut
7 )7 7 )7
=u(t) +1v(t)

where  u(t) =e*(acos ut—bsin ut), v(t) =e*(asin ut +bcos ut),

are real valued solutions of x'= Ax, and can be shown to be linearly
independent.



Spiral Points, Centers,
Eigenvalues, and Trajectories

. . — v
In previous example, general solution was s
=

wo[ %) e % cost L e %sint
X, \—esint) ‘le'?cost n
The origin was a spiral point, and was asymptotically stable.

If real part of complex eigenvalues is positive, then trajectories spiral away,
unbounded, from origin, and hence origin would be an unstable spiral point.

If real part of complex eigenvalues is zero, then trajectories circle origin, neither
approaching nor departing. Then origin is called a center and is stable, but not
asymptotically stable. Trajectories periodic in time.

The direction of trajectory motion depends on entries in A.



Example 2:
Second Order System with Parameter (1 of 2)

The system x' = Ax below contains a parameter « : v _[ o 2}(
-2 0

Substituting x =&e™ infor x and rewriting systemas (A-rl)§ =0, we
obtain

a-r 2Y&) (O

-2 -r)&) \o
Next, solve for r in terms of « :

a—r 2

at\Na
: =r(r—-a)+4=r’—ar+4=r=
—2 —r




Example 2: S

Eigenvalue Analysis (2 of 2)

The eigenvalues are given by the quadratic formula above.

For a < -4, both eigenvalues are real and negative, and hence origin is asymptotically
stable node.

For a > 4, both eigenvalues are real and positive, and hence the origin is an unstable
node.

For -4 < a <0, eigenvalues are complex with a negative real part, and hence origin is
asymptotically stable spiral point.

For 0 < ar < 4, eigenvalues are complex with a positive real part, and the origin is an
unstable spiral point.

For a =0, eigenvalues are purely imaginary, origin is a center. Trajectories closed
curves about origin & periodic.

For a = + 4, eigenvalues real & equal, origin is a node (Ch 7.8)



Second Order Solution Behavior and Eigenvalues:

* For

« Oth

Three Main Cases

second order systems, the three main cases are:

Eigenvalues are real and have opposite signs; x = 0 is a saddle point.
Eigenvalues are real, distinct and have same sign; x = 0 is a node.
Eigenvalues are complex with nonzero real part; x = 0 a spiral point.

er possibilities exist and occur as transitions between two of the cases

listed above:

r =

A zero eigenvalue occurs during transition between saddle point and
node. Real and equal eigenvalues occur during transition between nodes

and spiral points. Purely imaginary eigenvalues occur during a transition
between asymptotically stable and unstable spiral points.

) ‘ R T
—b++/b*-4ac 1 + —

i







Example 3: Multiple Spring-Mass System (1 of 6)

« The equations for the system of two masses and three springs discussed in
Section 7.1, assuming no external forces, can be expressed as:

d?x d?x
m gt =~k r ko) +ox, and m, — 22 = kox (K, +k,),

tz
or mlyslz_(k1+k2))/1+k2y2 and m2y4'=k2y1_(k2+k3)y2
where y; =X;, Y, =X, Y3 =%, and y, =X’

« Given m=2,m,=9/4,k =1k, =3, and k; =15/4, the equations become

Yi=VYa Yo =VY4, Y5 =2y, +3/2 y,,and y,'=4/3 y, -3y,



Y1'= Yar ¥o'= Vs Y3 ==2Y, +32Y,, and y,'=4/3 Y, -3y,
Example 3: Multiple Spring-Mass System (2 of 6)

Writing the system of equations in matrix form:

0 0 10
0 0 01
,: :A
4 -2 3/12 0 0 A
4/3 -3 0 O

Assuming a solution of the form y = e , where r must be an eigenvalue of
the matrix A and g is the corresponding eigenvector, the characteristic

polynomial of A'is r* +5r2 +4=(r2 +1)(r? + 4)

yielding the eigenvalues: L=I,1r,=—r=2andr, =-2i



Example 3: Multiple Spring-Mass
System (3 of 6)

elgenvectors are

« Fortheeigenvalues K =i, =, r,=2i,and r, =-2i
3 3
2 2 ~4
e P K Y 6i
2i —2i —8i

0 0
, |0 o0
Y=\ _2 312

4/3 -3

o O O -

the corresponding

3
4
—6i

8i

65(4) —

« The products g%We" and £®e®" yield the complex-valued solutions:

5(1)eit _

é;(s)eZit _

3
2
3i
2i

3cost 3sint
o 2cost | 2sint
(cost+isint) = _ +1

—3sint 3cost

—2sint 2cost
3 3cos 2t
_4 - —4cos 2t

. |(cos 2t +isin 2t) = _ + 1
61 —6SIn 2t
—8i 8sin 2t

=u®(t)

3sin 2t

| —4sin 2t

6 cos 2t
—8cos 2t

+iv®(t)

=u@ @) +iv@(t)




Y1I: Y, Y2l: Ya Y3':_2y1+3/2 Yo and y4':4/3 y1_3y2

Example 3: Multiple Spring-Mass System (4 of 6)

. After validating that U (©), v (), u® (1), v (1) are linearly independent,
the general solution of the system of equations can be written as

3cost 3sint 3cos 2t 3sin 2t

2cost 2sint —4cos 2t —4sin 2t
y=c ) +C, +C, ) +cC,

—-3sint 3cost —6SIn 2t 6 cos 2t

—2sint 2cost 8sin 2t —8cos 2t

« where €, G, G, G4 are arbitrary constants.

» Each solution will be periodic with period 27w, so each trajectory is a closed
curve. The first two terms of the solution describe motions with frequency 1 and
period 2zt while the second two terms describe motions with frequency 2 and
period . The motions of the two masses will be different relative to one another
for solutions involving only the first two terms or the second two terms.



y, and y, represent the motion of themassesand Ys =Y. Y, =Y;'

Example 3: Multiple Spring-Mass System (5 of 6)

To obtain the fundamental mode of vibration with frequency 1

c, =C, =0 — occurs when 3y, (0) =2y,(0) and 3y,(0) =2y,(0)

To obtain the fundamental mode of vibration with frequency 2

c, =C, =0 — occurs when 3y, (0) =—4vy,(0) and 3y,(0) =—4y,(0)

Plots of Y, and Yy, and parametric plots (y, y’) are shown for a selected

solution with frequency 1

Plots of the solutions as functions of time

y(0) =

Y, (0)
y,(0)
y3(0)
y,(0)

O O N W

Phase plane plots

(Y1: ¥a)
."\f: (YDY4)




y, and y, represent the motion of themassesand Y; =Y, Y, = Y1’

Example 3: Multiple Spring-Mass System (6 of 6)

Plotsof Y, andy, and parametric plots (y, y’) are shown for a selected solution
with frequency 2

lots of the sol f f Phase plane plots
P ots of the so utlons as unctlons oftime yl(O) 3 (_ Yoy
y (0) —4 <~ (W Ys)
/\ /\ / ¥(0)= 2 _ [ AR
y,(0) {0 |

Plots of y,andy, and parametric plots (y,y") are shown for a selected solution
with mixed frequencies satisfying the initial condition stated

v3,va

Plots of the solutions as functions of time -——--?---ﬁt,()’z, v.)

.-

! :.“‘ <Y1 Y _;-'\‘ I -1 , Ys)
4 -
0] )
1

Phase plane plots

vi,y2



