
7.6: Complex Eigenvalues

• We consider again a homogeneous system of n first order linear equations with 

constant, real coefficients,

and thus the system can be written as x' = Ax, where
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Conjugate Eigenvalues and Eigenvectors

• We know that x = ert is a solution of  x' = Ax, provided  r is an eigenvalue 

and   is an eigenvector of  A.

• The eigenvalues   r1,…, rn are the roots of   det(A-rI) = 0,   and the 

corresponding eigenvectors satisfy   (A-rI) = 0.  

• If  A is real, then the coefficients in the polynomial equation   det(A-rI) = 0 

are real, and hence any complex eigenvalues must occur in conjugate pairs. 

Thus  if   r1 =  + i is  an  eigenvalue,   then   the  second  solution  is         

r2 =  - i.

• The corresponding eigenvectors   (1),  (2) are conjugates  also.

To see this,  recall  A and  I have real entries, and hence
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Conjugate Solutions

• It follows from the previous slide that the solutions

corresponding to these eigenvalues and eigenvectors are 

conjugates as well, since
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Example 1: Direction Field   (1 of 7)

• Consider the homogeneous equation   x' = Ax below:

• A direction field for this system is given below.

• Substituting   x = ert in for  x,  and rewriting system as 

(A-rI) = 0,   we obtain
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Example 1: Complex Eigenvalues   (2 of 7)

• We determine r by solving det(A-rI) = 0.   Now

• Thus 

• Therefore the eigenvalues are    r1 = -1/2 + i and   r2 = -1/2 - i.   
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Example 1: First Eigenvector  (3 of 7)

• Eigenvector for r1 = -1/2 + i: Solve

by row reducing the augmented matrix:

• Thus
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Example 1: Second Eigenvector  (4 of 7)

• Eigenvector for r1 = -1/2 - i: Solve

by row reducing the augmented matrix:

• Thus
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Real valued solutions

• The two solutions:

• Remember

• Then 

• The two real valued solutions: 
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Example 1: General Solution (5 of 7)

• The corresponding solutions  x = ert of   x' = Ax are

• The Wronskian of these two solutions is

• Thus  u(t) and  v(t) are real-valued fundamental solutions of  x' = Ax,  with 

general solution   x = c1u + c2v.
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Example 1: Phase Plane (6 of 7)

• Given below is the phase plane plot for solutions x, with

• Each solution trajectory approaches origin along a spiral path as t , since 

coordinates are products of decaying exponential and sine or cosine factors. 

• The graph of u passes through (1,0), 

since u(0) = (1,0). Similarly, the 

graph of v passes through (0,1). 

• The origin is a spiral point, and 

is asymptotically stable.
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Example 1: Time Plots (7 of 7)

• The general solution is x = c1u + c2v:

• As an alternative to phase plane plots, we can graph x1 or x2 as 

a function of t.  A few plots of x1 are 

given below, each one a decaying 

oscillation as t .
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General Solution

• To summarize, suppose  r1 =  + i,  r2 =  - i,  and that  r3,…, rn are all 

real and distinct eigenvalues of  A.   Let the corresponding eigenvectors be

• Then the general solution of x' = Ax is 

where
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Real-Valued Solutions

• Thus for complex conjugate eigenvalues r1 and r2 , the corresponding 

solutions x(1) and x(2) are conjugates also.

• To obtain real-valued solutions, use real and imaginary parts of either x(1) or 

x(2). To see this, let (1) = a + i b. Then

where

are real valued solutions of   x' = Ax, and can be shown to be linearly 

independent.  
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Spiral Points, Centers, 

Eigenvalues, and Trajectories

• In previous example, general solution was

• The origin was a spiral point, and was asymptotically stable.  

• If real part of complex eigenvalues is positive, then trajectories spiral away, 

unbounded, from origin, and hence origin would be an unstable spiral point. 

• If real part of complex eigenvalues is zero, then trajectories circle origin, neither 

approaching nor departing. Then origin is called a center and is stable, but not 

asymptotically stable.  Trajectories periodic in time. 

• The direction of trajectory motion depends on entries in A. 
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Example 2: 

Second Order System with Parameter  (1 of 2)

• The system x' = Ax below contains a parameter  :

• Substituting   x = ert in for  x and  rewriting system as   (A-rI) = 0,   we 

obtain

• Next, solve for r in terms of  :

xx 
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Example 2: 

Eigenvalue Analysis   (2 of 2)

• The eigenvalues are given by the quadratic formula above.

• For  < -4, both eigenvalues are real and negative, and hence origin is asymptotically 

stable node.  

• For  > 4, both eigenvalues are real and positive, and hence the origin is an unstable 

node.

• For -4 <  < 0, eigenvalues are complex with a negative real part, and hence origin is 

asymptotically stable spiral point.

• For 0 <  < 4, eigenvalues are complex with a positive real part, and the origin is an 

unstable spiral point.

• For  = 0, eigenvalues are purely imaginary, origin is a center.  Trajectories closed 

curves about origin & periodic.

• For  =  4, eigenvalues real & equal, origin is a node (Ch 7.8)
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Second Order Solution Behavior and Eigenvalues: 

Three Main Cases

• For second order systems, the three main cases are:

– Eigenvalues are real and have opposite signs; x = 0 is a saddle point.

– Eigenvalues are real, distinct and have same sign; x = 0 is a node.

– Eigenvalues are complex with nonzero real part; x = 0 a spiral point.

• Other possibilities exist and occur as transitions between two of the cases 

listed above: 

– A zero eigenvalue occurs during transition between saddle point and 

node. Real and equal eigenvalues occur during transition between nodes 

and spiral points. Purely imaginary eigenvalues occur during a transition 

between asymptotically stable and unstable spiral points.  
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Example 3: Multiple Spring-Mass System (1 of 6)

• The equations for the system of two masses and three springs discussed in 

Section 7.1, assuming no external forces, can be expressed as:

• Given the equations become 

'  and,',,  where
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Example 3: Multiple Spring-Mass System (2 of 6)

• Writing the system of equations in matrix form:

• Assuming a solution of the form y = ert , where r must be an eigenvalue of 

the matrix A and  is the corresponding eigenvector, the characteristic 

polynomial of A is

yielding the eigenvalues: 
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Example 3: Multiple Spring-Mass 

System (3 of 6)

• For the eigenvalues the corresponding 

eigenvectors are 

• The products yield the complex-valued solutions:
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Example 3: Multiple Spring-Mass System (4 of 6)

• After validating that  are linearly independent, 

the general solution of the system of equations can be written as

• where                  are arbitrary constants.

• Each solution will be periodic with period 2π, so each trajectory is a closed 

curve. The first two terms of the solution describe motions with frequency 1 and 

period 2π while the second two terms describe motions with frequency 2 and 

period π. The motions of the two masses will be different relative to one another 

for solutions involving only the first two terms or the second two terms. 
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Example 3: Multiple Spring-Mass System (5 of 6)

• To obtain the fundamental mode of vibration with frequency 1

• To obtain the fundamental mode of vibration with frequency 2

• Plots of and parametric plots  (y, y’) are shown for a selected 

solution with frequency 1
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Example 3: Multiple Spring-Mass System (6 of 6)

• Plots of and parametric plots (y, y’) are shown for a selected solution 

with frequency 2

• Plots of and parametric plots  (y, y’)  are shown for a selected solution 

with mixed frequencies satisfying  the initial condition stated
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