7.6: Complex Eigenvalues

• We consider again a homogeneous system of *n* first order linear equations with constant, real coefficients,

$$x_{1}' = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n}$$

$$x_{2}' = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n}$$

$$\vdots$$

$$x_{n}' = a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n},$$

and thus the system can be written as $\mathbf{x}' = \mathbf{A}\mathbf{x}$, where

$$\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}, \ \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Conjugate Eigenvalues and Eigenvectors

- We know that $\mathbf{x} = \boldsymbol{\xi} e^{rt}$ is a solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$, provided *r* is an eigenvalue and $\boldsymbol{\xi}$ is an eigenvector of \mathbf{A} .
- The eigenvalues $r_1, ..., r_n$ are the roots of $det(\mathbf{A}-r\mathbf{I}) = 0$, and the corresponding eigenvectors satisfy $(\mathbf{A}-r\mathbf{I})\boldsymbol{\xi} = \mathbf{0}$.
- If A is real, then the coefficients in the polynomial equation det(A-rI) = 0are real, and hence any complex eigenvalues must occur in conjugate pairs. Thus if $r_1 = \lambda + i\mu$ is an eigenvalue, then the second solution is $r_2 = \lambda - i\mu$.
- The corresponding eigenvectors ξ⁽¹⁾, ξ⁽²⁾ are conjugates also.
 To see this, recall A and I have real entries, and hence

$$(\mathbf{A} - r_1 \mathbf{I}) \boldsymbol{\xi}^{(1)} = \mathbf{0} \implies (\mathbf{A} - \bar{r}_1 \mathbf{I}) \overline{\boldsymbol{\xi}}^{(1)} = \mathbf{0} \implies (\mathbf{A} - r_2 \mathbf{I}) \boldsymbol{\xi}^{(2)} = \mathbf{0}$$

Conjugate Solutions

• It follows from the previous slide that the solutions

$$\mathbf{x}^{(1)} = \boldsymbol{\xi}^{(1)} e^{r_1 t}, \quad \mathbf{x}^{(2)} = \boldsymbol{\xi}^{(2)} e^{r_2 t}$$

corresponding to these eigenvalues and eigenvectors are conjugates as well, since

$$\mathbf{x}^{(2)} = \boldsymbol{\xi}^{(2)} e^{r_2 t} = \overline{\boldsymbol{\xi}}^{(1)} e^{\overline{r_2} t} = \overline{\mathbf{x}}^{(1)}$$

Example 1: Direction Field (1 of 7)

• Consider the homogeneous equation $\mathbf{x}' = \mathbf{A}\mathbf{x}$ below:

$$\mathbf{x}' = \begin{pmatrix} -1/2 & 1\\ -1 & -1/2 \end{pmatrix} \mathbf{x}$$

- A direction field for this system is given below.
- Substituting $\mathbf{x} = \boldsymbol{\xi} e^{rt}$ in for \mathbf{x} , and rewriting system as $(\mathbf{A}-r\mathbf{I})\boldsymbol{\xi} = \mathbf{0}$, we obtain

$$\begin{pmatrix} -1/2-r & 1\\ -1 & -1/2-r \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_1 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

Example 1: Complex Eigenvalues (2 of 7)

• We determine *r* by solving $det(\mathbf{A}-r\mathbf{I}) = 0$. Now

$$\begin{vmatrix} -1/2 - r & 1 \\ -1 & -1/2 - r \end{vmatrix} = (r + 1/2)^2 + 1 = r^2 + r + \frac{5}{4}$$

• Thus
$$r = \frac{-1 \pm \sqrt{1^2 - 4(5/4)}}{2} = \frac{-1 \pm 2i}{2} = -\frac{1}{2} \pm i$$

• Therefore the eigenvalues are $r_1 = -1/2 + i$ and $r_2 = -1/2 - i$.

Example 1: First Eigenvector (3 of 7)

• Eigenvector for $r_1 = -1/2 + i$: Solve

$$(\mathbf{A} - r\mathbf{I})\boldsymbol{\xi} = \mathbf{0} \iff \begin{pmatrix} -1/2 - r & 1\\ -1 & -1/2 - r \end{pmatrix} \begin{pmatrix} \boldsymbol{\xi}_1 \\ \boldsymbol{\xi}_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\Leftrightarrow \begin{pmatrix} -i & 1\\ -1 & -i \end{pmatrix} \begin{pmatrix} \boldsymbol{\xi}_1 \\ \boldsymbol{\xi}_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} 1 & i \\ -1 & -i \end{pmatrix} \begin{pmatrix} \boldsymbol{\xi}_1 \\ \boldsymbol{\xi}_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

by row reducing the augmented matrix:

$$\begin{pmatrix} 1 & i & 0 \\ -1 & -i & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & i & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \xi^{(1)} = \begin{pmatrix} -i\xi_2 \\ \xi_2 \end{pmatrix} \rightarrow \text{choose } \xi^{(1)} = \begin{pmatrix} 1 \\ i \end{pmatrix}$$

• Thus $\xi^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + i \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Example 1: Second Eigenvector (4 of 7)

• Eigenvector for $r_1 = -1/2 - i$: Solve

$$(\mathbf{A} - r\mathbf{I})\boldsymbol{\xi} = \mathbf{0} \iff \begin{pmatrix} -1/2 - r & 1 \\ -1 & -1/2 - r \end{pmatrix} \begin{pmatrix} \boldsymbol{\xi}_1 \\ \boldsymbol{\xi}_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\Leftrightarrow \begin{pmatrix} i & 1 \\ -1 & i \end{pmatrix} \begin{pmatrix} \boldsymbol{\xi}_1 \\ \boldsymbol{\xi}_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} 1 & -i \\ -1 & i \end{pmatrix} \begin{pmatrix} \boldsymbol{\xi}_1 \\ \boldsymbol{\xi}_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

by row reducing the augmented matrix:

$$\begin{pmatrix} 1 & -i & 0 \\ -1 & i & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -i & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \xi^{(2)} = \begin{pmatrix} i\xi_2 \\ \xi_2 \end{pmatrix} \rightarrow \text{choose } \xi^{(2)} = \begin{pmatrix} 1 \\ -i \end{pmatrix}$$

• Thus $\xi^{(2)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + i \begin{pmatrix} 0 \\ -1 \end{pmatrix}$

Real valued solutions

$$\mathbf{x}' = \begin{pmatrix} -1/2 & 1\\ -1 & -1/2 \end{pmatrix} \mathbf{x}$$

• The two solutions: $X^{(1)}(t)$

$$(x) = e^{-t/2} \begin{pmatrix} 1 \\ i \end{pmatrix} e^{it}, \qquad X^{(2)}(t) = e^{-t/2} \begin{pmatrix} 1 \\ -i \end{pmatrix} e^{-it}$$

• Remember $e^{it} = \cos t + i \sin t$

• Then
$$X^{(1)}(t) = e^{-t/2} \begin{pmatrix} \cos t + i \sin t \\ -\sin t + i \cos t \end{pmatrix} \qquad X^{(2)}(t) = e^{-t/2} \begin{pmatrix} \cos t - i \sin t \\ -\sin t - i \cos t \end{pmatrix}$$

$$\frac{1}{2} \Big(X^{(1)}(t) + X^{(2)}(t) \Big) = e^{-t/2} \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}, \qquad \frac{1}{2i} \Big(X^{(1)}(t) - X^{(2)}(t) \Big) = e^{-t/2} \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$

• The two real valued solutions:

$$u(t) = e^{-t/2} \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}, \qquad v(t) = e^{-t/2} \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$

Example 1: General Solution (5 of 7)

• The corresponding solutions $\mathbf{x} = \boldsymbol{\xi} e^{rt}$ of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ are

$$\mathbf{u}(t) = e^{-t/2} \left[\begin{pmatrix} 1\\0 \end{pmatrix} \cos t - \begin{pmatrix} 0\\1 \end{pmatrix} \sin t \right] = e^{-t/2} \begin{pmatrix} \cos t\\-\sin t \end{pmatrix}$$
$$\mathbf{v}(t) = e^{-t/2} \left[\begin{pmatrix} 1\\0 \end{pmatrix} \sin t + \begin{pmatrix} 0\\1 \end{pmatrix} \cos t \right] = e^{-t/2} \begin{pmatrix} \sin t\\\cos t \end{pmatrix}$$

• The Wronskian of these two solutions is

$$W[\mathbf{x}^{(1)}, \mathbf{x}^{(2)}](t) = \begin{vmatrix} e^{-t/2} \cos t & e^{-t/2} \sin t \\ -e^{-t/2} \sin t & e^{-t/2} \cos t \end{vmatrix} = e^{-t} \neq 0$$

• Thus $\mathbf{u}(t)$ and $\mathbf{v}(t)$ are real-valued fundamental solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$, with general solution $\mathbf{x} = c_1\mathbf{u} + c_2\mathbf{v}$.

Example 1: Phase Plane (6 of 7)

• Given below is the phase plane plot for solutions **x**, with

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 \begin{pmatrix} e^{-t/2} \cos t \\ -e^{-t/2} \sin t \end{pmatrix} + c_2 \begin{pmatrix} e^{-t/2} \sin t \\ e^{-t/2} \cos t \end{pmatrix}$$

- Each solution trajectory approaches **origin** along a spiral path as $t \to \infty$, since coordinates are products of decaying exponential and sine or cosine factors.
- The graph of u passes through (1,0), since u(0) = (1,0). Similarly, the graph of v passes through (0,1).
- The origin is a **spiral point**, and is asymptotically stable.

Example 1: Time Plots (7 of 7)

• The general solution is $\mathbf{x} = c_1 \mathbf{u} + c_2 \mathbf{v}$:

$$\mathbf{x} = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} c_1 e^{-t/2} \cos t + c_2 e^{-t/2} \sin t \\ -c_1 e^{-t/2} \sin t + c_2 e^{-t/2} \cos t \end{pmatrix}$$

• As an alternative to phase plane plots, we can graph x_1 or x_2 as a function of *t*. A few plots of x_1 are given below, each one a decaying oscillation as $t \to \infty$.

General Solution

• To summarize, suppose $r_1 = \lambda + i\mu$, $r_2 = \lambda - i\mu$, and that r_3, \dots, r_n are all real and distinct eigenvalues of **A**. Let the corresponding eigenvectors be

$$\xi^{(1)} = \mathbf{a} + i\mathbf{b}, \ \xi^{(2)} = \mathbf{a} - i\mathbf{b}, \ \xi^{(3)}, \ \xi^{(4)}, \dots, \ \xi^{(n)}$$

• Then the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is

$$\mathbf{x} = c_1 \mathbf{u}(t) + c_2 \mathbf{v}(t) + c_3 \boldsymbol{\xi}^{(3)} e^{r_3 t} + \dots + c_n \boldsymbol{\xi}^{(n)} e^{r_n t}$$

where $\mathbf{u}(t) = e^{\lambda t} (\mathbf{a} \cos \mu t - \mathbf{b} \sin \mu t), \ \mathbf{v}(t) = e^{\lambda t} (\mathbf{a} \sin \mu t + \mathbf{b} \cos \mu t)$

Real-Valued Solutions

- Thus for complex conjugate eigenvalues r_1 and r_2 , the corresponding solutions $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are conjugates also.
- To obtain real-valued solutions, use real and imaginary parts of either x⁽¹⁾ or x⁽²⁾. To see this, let ξ⁽¹⁾ = a + i b. Then

$$\mathbf{x}^{(1)} = \mathbf{\xi}^{(1)} e^{(\lambda + i\mu)t} = (\mathbf{a} + i\mathbf{b}) e^{\lambda t} (\cos \mu t + i\sin \mu t)$$
$$= e^{\lambda t} (\mathbf{a} \cos \mu t - \mathbf{b} \sin \mu t) + i e^{\lambda t} (\mathbf{a} \sin \mu t + \mathbf{b} \cos \mu t)$$
$$= \mathbf{u}(t) + i \mathbf{v}(t)$$

where $\mathbf{u}(t) = e^{\lambda t} (\mathbf{a} \cos \mu t - \mathbf{b} \sin \mu t), \ \mathbf{v}(t) = e^{\lambda t} (\mathbf{a} \sin \mu t + \mathbf{b} \cos \mu t),$

are real valued solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$, and can be shown to be linearly independent.

Spiral Points, Centers, Eigenvalues, and Trajectories

• In previous example, general solution was

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 \begin{pmatrix} e^{-t/2} \cos t \\ -e^{-t/2} \sin t \end{pmatrix} + c_2 \begin{pmatrix} e^{-t/2} \sin t \\ e^{-t/2} \cos t \end{pmatrix}$$

- The origin was a **spiral point**, and was **asymptotically stable**.
- If real part of complex eigenvalues is positive, then trajectories spiral away, unbounded, from origin, and hence **origin would be an unstable spiral point**.
- If real part of complex eigenvalues is zero, then trajectories circle origin, neither approaching nor departing. Then origin is called a **center** and is stable, but not asymptotically stable. Trajectories periodic in time.
- The direction of trajectory motion depends on entries in A.

Example 2: Second Order System with Parameter (1 of 2)

• The system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ below contains a parameter α :

$$\mathbf{x}' = \begin{pmatrix} \alpha & 2 \\ -2 & 0 \end{pmatrix} \mathbf{x}$$

• Substituting $\mathbf{x} = \boldsymbol{\xi} e^{rt}$ in for \mathbf{x} and rewriting system as $(\mathbf{A} - r\mathbf{I})\boldsymbol{\xi} = \mathbf{0}$, we obtain

$$\begin{pmatrix} \alpha - r & 2 \\ -2 & -r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

• Next, solve for *r* in terms of α :

$$\begin{vmatrix} \alpha - r & 2 \\ -2 & -r \end{vmatrix} = r(r - \alpha) + 4 = r^2 - \alpha r + 4 \Longrightarrow r = \frac{\alpha \pm \sqrt{\alpha^2 - 16}}{2}$$

Example 2: Eigenvalue Analysis (2 of 2)

- The eigenvalues are given by the quadratic formula above.
- For α < -4, both eigenvalues are real and negative, and hence origin is asymptotically stable node.
- For $\alpha > 4$, both eigenvalues are real and positive, and hence the origin is an unstable node.
- For $-4 < \alpha < 0$, eigenvalues are complex with a **negative real part**, and hence origin is asymptotically stable spiral point.
- For $0 < \alpha < 4$, eigenvalues are complex with a **positive real part**, and the origin is an unstable spiral point.
- For $\alpha = 0$, eigenvalues are purely imaginary, origin is a center. Trajectories closed curves about origin & periodic.
- For $\alpha = \pm 4$, eigenvalues real & equal, origin is a node (Ch 7.8)

Second Order Solution Behavior and Eigenvalues: Three Main Cases

- For second order systems, the three main cases are:
 - Eigenvalues are real and have opposite signs; $\mathbf{x} = \mathbf{0}$ is a saddle point.
 - Eigenvalues are real, distinct and have same sign; $\mathbf{x} = \mathbf{0}$ is a node.
 - Eigenvalues are complex with nonzero real part; $\mathbf{x} = \mathbf{0}$ a spiral point.
- Other possibilities exist and occur as transitions between two of the cases listed above:
 - A zero eigenvalue occurs during transition between saddle point and node. Real and equal eigenvalues occur during transition between nodes and spiral points. Purely imaginary eigenvalues occur during a transition between asymptotically stable and unstable spiral points.

 $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

Example 3: Multiple Spring-Mass System (1 of 6)

• The equations for the system of two masses and three springs discussed in Section 7.1, assuming no external forces, can be expressed as:

$$m_1 \frac{d^2 x_1}{dt^2} = -(k_1 + k_2)x_1 + k_2 x_2 \text{ and } m_2 \frac{d^2 x_2}{dt^2} = k_2 x_1 - (k_2 + k_3)x_2$$

or $m_1 y_3' = -(k_1 + k_2)y_1 + k_2 y_2$ and $m_2 y_4' = k_2 y_1 - (k_2 + k_3)y_2$
where $y_1 = x_1, y_2 = x_2, y_3 = x_1'$, and $y_4 = x_2'$

• Given $m_1 = 2$, $m_2 = 9/4$, $k_1 = 1$, $k_2 = 3$, and $k_3 = 15/4$, the equations become

$$y_1' = y_3, y_2' = y_4, y_3' = -2y_1 + 3/2 y_2, \text{ and } y_4' = 4/3 y_1 - 3y_2$$

$$y_1' = y_3$$
, $y_2' = y_4$, $y_3' = -2y_1 + 3/2$ y_2 , and $y_4' = 4/3$ $y_1 - 3y_2$

Example 3: Multiple Spring-Mass System (2 of 6)

• Writing the system of equations in matrix form:

$$\mathbf{y'} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -2 & 3/2 & 0 & 0 \\ 4/3 & -3 & 0 & 0 \end{pmatrix} \mathbf{y} = \mathbf{A}\mathbf{y}$$

• Assuming a solution of the form $y = \xi e^{rt}$, where *r* must be an eigenvalue of the matrix *A* and ξ is the corresponding eigenvector, the characteristic polynomial of *A* is $r^{4} + 5r^{2} + 4 = (r^{2} + 1)(r^{2} + 4)$

yielding the eigenvalues: $r_1 = i$, $r_2 = -i$, $r_3 = 2i$, and $r_4 = -2i$

Example 3: Multiple Spring-Mass System (3 of 6)

$$\boldsymbol{y'} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -2 & 3/2 & 0 & 0 \\ 4/3 & -3 & 0 & 0 \end{pmatrix} \boldsymbol{y} = \boldsymbol{A} \boldsymbol{y}$$

• For the eigenvalues $r_1 = i$, $r_2 = -i$, $r_3 = 2i$, and $r_4 = -2i$ the corresponding eigenvectors are

$$\xi^{(1)} = \begin{pmatrix} 3\\2\\3i\\2i \end{pmatrix}, \ \xi^{(2)} = \begin{pmatrix} 3\\2\\-3i\\-2i \end{pmatrix}, \ \xi^{(3)} = \begin{pmatrix} 3\\-4\\6i\\-8i \end{pmatrix}, \ \text{and} \ \xi^{(4)} = \begin{pmatrix} 3\\-4\\-6i\\8i \end{pmatrix}$$

• The products $\xi^{(1)}e^{it}$ and $\xi^{(3)}e^{2it}$ yield the complex-valued solutions:

$$\xi^{(1)}e^{it} = \begin{pmatrix} 3\\2\\3i\\2i \end{pmatrix} (\cos t + i\sin t) = \begin{pmatrix} 3\cos t\\2\cos t\\-3\sin t\\-2\sin t \end{pmatrix} + i\begin{pmatrix} 3\sin t\\2\sin t\\3\cos t\\2\cos t \end{pmatrix} = \mathbf{u}^{(1)}(t) + i\,\mathbf{v}^{(1)}(t)$$
$$\xi^{(3)}e^{2it} = \begin{pmatrix} 3\\-4\\6i\\-8i \end{pmatrix} (\cos 2t + i\sin 2t) = \begin{pmatrix} 3\cos 2t\\-4\cos 2t\\-6\sin 2t\\8\sin 2t \end{pmatrix} + i\begin{pmatrix} 3\sin 2t\\-4\sin 2t\\-6\sin 2t\\-8\cos 2t \end{pmatrix} = \mathbf{u}^{(2)}(t) + i\,\mathbf{v}^{(2)}(t)$$

 $y_1' = y_3$, $y_2' = y_4$, $y_3' = -2y_1 + 3/2 y_2$, and $y_4' = 4/3 y_1 - 3y_2$

Example 3: Multiple Spring-Mass System (4 of 6)

• After validating that $\mathbf{u}^{(1)}(t)$, $\mathbf{v}^{(1)}(t)$, $\mathbf{u}^{(2)}(t)$, $\mathbf{v}^{(2)}(t)$ are linearly independent, the general solution of the system of equations can be written as

$$\mathbf{y} = c_1 \begin{pmatrix} 3\cos t \\ 2\cos t \\ -3\sin t \\ -2\sin t \end{pmatrix} + c_2 \begin{pmatrix} 3\sin t \\ 2\sin t \\ 3\cos t \\ 2\cos t \end{pmatrix} + c_3 \begin{pmatrix} 3\cos 2t \\ -4\cos 2t \\ -6\sin 2t \\ 8\sin 2t \end{pmatrix} + c_4 \begin{pmatrix} 3\sin 2t \\ -4\sin 2t \\ 6\cos 2t \\ -8\cos 2t \end{pmatrix}$$

- where C_1, C_2, C_3, C_4 are arbitrary constants.
- Each solution will be periodic with period 2π, so each trajectory is a closed curve. The first two terms of the solution describe motions with frequency 1 and period 2π while the second two terms describe motions with frequency 2 and period π. The motions of the two masses will be different relative to one another for solutions involving only the first two terms or the second two terms.

 y_1 and y_2 represent the motion of the masses and $y_3 = y_1'$, $y_4 = y_1'$

Example 3: Multiple Spring-Mass System (5 of 6)

• To obtain the fundamental mode of vibration with frequency 1

 $c_3 = c_4 = 0 \rightarrow \text{occurs when } 3y_2(0) = 2y_1(0) \text{ and } 3y_4(0) = 2y_3(0)$

• To obtain the fundamental mode of vibration with frequency 2

 $c_1 = c_2 = 0 \rightarrow \text{occurs when } 3y_2(0) = -4y_1(0) \text{ and } 3y_4(0) = -4y_3(0)$

• Plots of y_1 and y_2 and parametric plots (y, y') are shown for a selected solution with frequency 1

 y_1 and y_2 represent the motion of the masses and $y_3 = y_1'$, $y_4 = y_1'$

Example 3: Multiple Spring-Mass System (6 of 6)

Plots of y₁ and y₂ and parametric plots (y, y') are shown for a selected solution with frequency 2

• Plots of y_1 and y_2 and parametric plots (y, y') are shown for a selected solution with mixed frequencies satisfying the initial condition stated

