
7.9: Nonhomogeneous Linear Systems

• The general theory of a nonhomogeneous system of equations

parallels that of a single nth order linear equation. 

• This system can be written as   x' = P(t)x + g(t),  where
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General Solution

• The general solution of   x' = P(t)x + g(t)   on   I:   < t <  has 

the form

where

is the general solution of the homogeneous system   x' = P(t)x

and  v(t)  is a particular solution of the nonhomogeneous system 

x' = P(t)x + g(t). 
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Diagonalization

• Suppose  x' = Ax + g(t),  where A is an n x n diagonalizable constant matrix. 

• Let T be the nonsingular transform matrix whose columns are the eigenvectors

of A, and D the diagonal matrix whose diagonal entries are the corresponding 

eigenvalues of A.

• Suppose x satisfies x' = Ax,  let  y be defined by  x = Ty.  

• Substituting x = Ty into x' = Ax, we obtain

Ty' = ATy + g(t).

or                  y' = T-1ATy + T-1g(t)

or                  y' = Dy + h(t), where h(t) = T-1g(t).

• Note that if we can solve diagonal system y' = Dy + h(t)  for y,   then   x = Ty

is a solution to the original system. 
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Solving Diagonal System

• Now y' = Dy + h(t) is a diagonal system of the form

where r1,…, rn are the eigenvalues of A.  

• Thus y' = Dy + h(t) is an uncoupled system of n linear first order equations in 

the unknowns yk(t), which can be isolated  

and solved separately, using methods of Section 2.1: 
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Solving Original System

• The solution y to y' = Dy + h(t)   has components

• For this solution vector y, the solution to the original system   x' = Ax + g(t)   is 

then   x = Ty. 

• Recall that T is the nonsingular transform matrix whose columns are the 

eigenvectors of A.  

• Thus, when multiplied by T, the second term on right side of yk produces general 

solution of homogeneous equation, while the integral term of yk produces a 

particular solution of nonhomogeneous system. 
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Example 1: General Solution of Homogeneous Case  

• Consider the nonhomogeneous system x' = Ax + g below.

• Note: A is a Hermitian matrix, since it is real and symmetric.

• The eigenvalues of A are r1 = -3 and  r2 = -1, with corresponding 

eigenvectors  

• The general solution of the homogeneous system   x' = Ax is then
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Example 1: Transformation Matrix

• Consider next the transformation matrix T of eigenvectors. Using a Section 

7.7 comment, and   A Hermitian,   we have

T-1 = T* = TT, provided we normalize (1)and (2) so that ((1), (1)) = 1 and 

((2), (2)) = 1. Thus normalize as follows:

• Then for this choice of eigenvectors, 
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Example 2: 

Diagonal System and its Solution (3 of 5)

• Under the transformation x = Ty, we obtain the diagonal system y' = Dy + T-

1g(t):

• Then, using methods of Section 2.1, 
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Example 2: General Solution of Homogeneous Case  
(1 of 5)

• Consider the nonhomogeneous system x' = Ax + g below.

• Note: A is a Hermitian matrix, since it is real and symmetric.

• The eigenvalues of A are r1 = -3 and  r2 = -1, with corresponding 

eigenvectors  

• The general solution of the homogeneous system is then
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Example 2: Transformation Matrix (2 of 5)

• Consider next the transformation matrix T of eigenvectors. Using a Section 

7.7 comment, and   A Hermitian,   we have

T-1 = T* = TT, provided we normalize (1)and (2) so that ((1), (1)) = 1 and 

((2), (2)) = 1. Thus normalize as follows:

• Then for this choice of eigenvectors, 
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Example 2: 

Diagonal System and its Solution (3 of 5)

• Under the transformation x = Ty, we obtain the diagonal system y' = Dy + T-

1g(t):

• Then, using methods of Section 2.1, 
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Example 2: 

Transform Back to Original System (4 of 5)

• We next use the transformation x = Ty to obtain the solution to the original 

system x' = Ax + g(t):
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Example 2: 

Solution of Original System (5 of 5)

• Simplifying further, the solution x can be written as

• Note that the first two terms on right side form the general solution to 

homogeneous system, while the remaining terms are a particular solution to 

nonhomogeneous system.

















































































































5

4

3

1

2

1

1

1

1

1

2

1

1

1

1

1

3

5
2

2

1

3

4

2

1

2

3

1

2

3

1

2

3

1

2

1

tteeekek

tetekek

tetekek

x

x

tttt

ttt

ttt



Nondiagonal Case

• If A cannot be diagonalized, (repeated eigenvalues and a shortage of 

eigenvectors), then it can be transformed to its Jordan form J, which is 

nearly diagonal.  

• In this case the differential equations are not totally uncoupled, because 

some rows of J have two nonzero entries: an eigenvalue in diagonal position, 

and a 1 in adjacent position to the right of diagonal position. 

• However, the equations for y1,…, yn can still be solved consecutively, 

starting with yn. Then the solution x to original system can be found using    

x = Ty. 



Undetermined Coefficients

• A second way of solving x' = P(t)x + g(t) is the method of undetermined 

coefficients. Assume P is a constant matrix, and that the components of g are 

polynomial, exponential or sinusoidal functions, or sums or products of 

these. 

• The procedure for choosing the form of solution is usually directly 

analogous to that given in Section 3.6.   

• The main difference arises when g(t) has the form uet, where  is a simple 

eigenvalue of P. In this case, g(t) matches solution form of homogeneous 

system x' = P(t)x, and as a result, it is necessary to take nonhomogeneous 

solution to be of the form atet + bet. This form differs from the Section 3.6 

analog, atet.



Example 2: Undetermined Coefficients  (1 of 5)

• Consider again the nonhomogeneous system x' = Ax + g:

• Assume a particular solution of the form

where the vector coefficents a, b, c, d are to be determined. 

• Since r = -1 is an eigenvalue of  A, it is necessary to include both ate-t and 

be-t, as mentioned on the previous slide. 
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Example 2: 

Matrix Equations for Coefficients  (2 of 5)

• Substituting

in for x in our nonhomogeneous system   x' = Ax + g,

we obtain

• Equating coefficients, we conclude that
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Example 2: 

Solving Matrix Equation for (a)    (3 of 5)

• Our matrix equations for the coefficients are:

• From the first equation, we see that a is an eigenvector of A corresponding to 

eigenvalue r = -1, and hence has the form

• We will see on the next slide that  = 1, and hence 
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Example 2: 

Solving Matrix Equation for (b)    (4 of 5)

• Our matrix equations for the coefficients are:

• Substituting aT = (,) into second equation, 

• Thus  = 1, and solving for b, we obtain
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Example 2: Particular Solution    (5 of 5)

• Our matrix equations for the coefficients are:

• Solving third equation for c, and then fourth equation for d, it is 

straightforward to obtain   cT = (1, 2),   dT = (-4/3, -5/3).  

• Thus our particular solution of x' = Ax + g is

• Comparing this to the result obtained in Example 1, we see that both 

particular solutions would be the same if we had chosen k = ½ for b on 

previous slide, instead of k = 0.
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Variation of Parameters: Preliminaries

• A more general way of solving x' = P(t)x + g(t) is the method of variation of 

parameters. 

• Assume P(t) and g(t) are continuous on  < t < , and let (t) be a 

fundamental matrix for the homogeneous system. 

• Recall that the columns of  are linearly independent solutions of x' = P(t)x, 

and hence (t) is invertible on the interval  < t < , and also '(t) = 

P(t)(t). 

• Next, recall that the solution of the homogeneous system can be expressed as 

x = (t)c.  

• Analogous to Section 3.7, assume the particular solution of the 

nonhomogeneous system has the form x = (t)u(t),

where u(t) is a vector to be found.  



Variation of Parameters: Solution

• We assume a particular solution of the form   x = (t)u(t).  

• Substituting this into x' = P(t)x + g(t), we obtain

'(t)u(t) + (t)u'(t) = P(t)(t)u(t) + g(t)

• Since '(t) = P(t)(t), the above equation simplifies to     u'(t) = -1(t)g(t)

• Thus

where the vector c is an arbitrary constant of integration.

• The general solution to x' = P(t)x + g(t) is therefore
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Variation of Parameters: Initial Value 

Problem

• For an initial value problem x' = P(t)x + g(t), x(t0) = x(0),    the general 

solution to    x' = P(t)x + g(t) is

• Alternatively, recall that the fundamental matrix (t) satisfies (t0) = I, and 

hence the general solution is

• In practice, it may be easier to row reduce matrices and solve necessary 

equations than to compute -1(t) and substitute into equations. See next 

example.


 

t

t
dsssttt

0

)()()()()( 1)0(

0

1
gΨΨxΨΨx




t

t
dssstt

0

)()()()( 1)0(
gΨΦxΦx



Example 3: Variation of Parameters  (1 of 3)

• Consider again the nonhomogeneous system   x' = Ax + g:

• We have previously found general solution to homogeneous case, with 

corresponding fundamental matrix: 

• Using variation of parameters method, our solution is given by  x = (t)u(t), 

where   u(t)   satisfies   (t)u'(t) = g(t),   or
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Example 3: Solving for u(t) (2 of 3)

• Solving (t)u'(t) = g(t) by row reduction,

• It follows that 
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Example 3: Solving for x(t) (3 of 3)

• Now x(t) = (t)u(t), and hence we multiply

to obtain, after collecting terms and simplifying,

• Note that this is the same solution as in Example 1.   







































2

1

332

3

3

2/32/3

6/2/2/

cetet

cetee

ee

ee
tt

ttt

tt

tt

x


























































 

5

4

3

1

2

1

1

1

2

1

1

1

1

1

1

1
2

3

1 teteecec tttt
x



Laplace Transforms

• The Laplace transform can be used to solve systems of 

equations. Here, the transform of a vector is the vector of 

component transforms, denoted by X(s):  

• Then by extending Theorem 6.2.1, we obtain
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Example 4: Laplace Transform  (1 of 5)

• Consider again the nonhomogeneous system x' = Ax + g:

• Taking the Laplace transform of each term, we obtain 

where G(s) is the transform of g(t), and is given by
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Example 4: Transfer Matrix  (2 of 5)

• Our transformed equation is 

• If we take x(0) = 0, then the above equation becomes

or

• Solving for X(s), we obtain

• The matrix (sI – A)-1 is called the transfer matrix. 
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Example 4: Finding Transfer Matrix  (3 of 5)

• Then 

• Solving for (sI – A)-1, we obtain
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Example 4: Transfer Matrix  (4 of 5)

• Next, X(s) = (sI – A)-1G(s), and hence

or
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Example 4: Transfer Matrix  (5 of 5)

• Thus

• To solve for x(t) = L-1{X(s)}, use partial fraction expansions of both 

components of X(s), and then Table 6.2.1 to obtain:

• Since we assumed x(0) = 0, this solution differs slightly from the previous 

particular solutions. 
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Summary   (1 of 2)

• The method of undetermined coefficients requires no integration but is limited 

in scope and may involve several sets of algebraic equations.

• Diagonalization requires finding inverse of transformation matrix and solving 

uncoupled first order linear equations. When coefficient matrix is Hermitian, 

the inverse of transformation matrix can be found without calculation, which 

is very helpful for large systems.

• The Laplace transform method involves matrix inversion, matrix 

multiplication, and inverse transforms. This method is particularly useful for 

problems with discontinuous or impulsive forcing functions.  



Summary   (2 of 2)

• Variation of parameters is the most general method, but it 

involves solving linear algebraic equations with variable 

coefficients, integration, and matrix multiplication, and hence 

may be the most computationally complicated method. 

• For many small systems with constant coefficients, all of these 

methods work well, and there may be little reason to select one 

over another. 


