K-THEORY OF ALGEBRAIC MICRODIFFERENTIAL OPERATORS AND
EPSILON FACTORS

DEEPAM PATEL

ABSTRACT. Given a smooth variety X over a field k of characteristic zero, we construct a morphism of
K-theory spectra K(Ex|v) — K(V), where Ex is the sheaf of microdifferential operators and V < T*X
is a conic open subset. This generalizes a result of Quillen for the K-theory of Dx-modules. As an
application, we give another construction of de Rham epsilon factors. As a consequence, we obtain that
the epsilon factor of a Dx-module only depends on the corresponding £x-module.
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1. INTRODUCTION

The theory of de Rham epsilon factors for Dx-modules on curves originates in unpublished work of Deligne
and was later developed by Beilinson—Bloch-Esnault ([2]) as a local invariant attached to singularities
of flat connections computing the global determinant of cohomology of the corresponding conenction. In
([1]), Beilinson develops an analogous theory of Betti epsilon factors for constructible sheaves on higher
dimensional varieties.

One of the guiding principles underlying this theory is that epsilon factors should depend only on the
local behavior of the Dx-module or constructible sheaf near its singular support. From this perspective,
epsilon factors are inherently microlocal objects, and it is natural to seek constructions that make this
microlocal nature manifest.
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In earlier work ([12]), the author developed a K-theoretic approach to de Rham epsilon factors on higher
dimensional varieties using filtered Dx-modules, leading to a conceptual construction of epsilon factors
and their basic properties. While this approach is well suited for comparisons with Betti realizations
and for studying functoriality under pushforward and pullback, it remains natural to ask whether epsilon
factors can be constructed directly in a purely microlocal framework and without reference to filtrations.
The present paper provides such a construction by working instead with the sheaf £x of algebraic mi-
crodifferential operators on the cotangent bundle (cf. section 2.4). A consequence of the construction
given in this article is that the resulting epsilon factors are defined in terms of modules over the sheaf of
micro-differential operators. The constructions here can also be applied to construct higher K-theoretic
microlocal characteristic classes (i.e. characterstic classes for sheaves of modules over the sheaf of micro-
differential operators).

The main technical goal of this article is to construct microlocalization morphisms at the level of algebraic
K-theory. More precisely, given a smooth variety X over a field of characteristic zero and a conic open
subset V' < T* X, we construct a natural morphism of K-theory spectra

K(&xlv) — K(V),

where the right-hand side denotes the K-theory of coherent sheaves on V' and the left side is the K-theory
spectrum of coherent Ex|y-modules. These morphisms are functorial with respect to inclusions of conic
opens and compatible with the corresponding constructions for Dx-modules. As a consequence, we ob-
tain microlocalization morphisms for K-theory with supports and, ultimately, a construction of de Rham
epsilon factors via microdifferential operators.

At a conceptual level, these results fit into a broader picture in which microlocal invariants are realized
as K-theoretic shadows of sheaves on the cotangent bundle. In particular, the constructions developed
here can also be used to define higher microlocal characteristic classes for £x-modules, generalizing the
usual characteristic cycle. We expect these ideas to be useful in other contexts where microlocal methods
interact with algebraic K-theory.

The prototype for the sort of microlocalization discussed above is a classical theorem of Quillen. We
begin by recalling Quillen’s theorem. Let (A, F') denote a positively filtered ring. Quillen ([13]) showed
that, under certain conditions on (A, F'), the extension of scalars morphism of K-theory spectra

K(F°A) - K(A)

is a weak equivalence of spectra. We refer to 3.2.4 for the precise statement. On the other hand, again
under certain conditions, one has an extension of scalars morphism:

K(F°A) — K(gr(A)).
As an application of Quillen’s theorem, one can construct a natural morphism of K-theory spectra
K(4) — K(gr(A)),

where gr(A) denotes the associated graded ring.! Strictly speaking, the construction of the previous mor-
phism requires one to be able to invert the weak equivalence K(FYA) — K(A). In general, one cannot
canonically invert a weak equivalence of spectra. However, one can canonically invert a weak equivalence
of fibrant-cofibrant spectra as a homotopy morphism (cf. section 2.1). Below, we shall assume all our
spectra are fibrant-cofibrant and morphisms mean homotopy morphisms. (Another way to deal with this

n the introduction, K-theory spectra will generally refer to the K-theory spectrum of finitely generated (left) modules
over the given ring, or the category of coherent sheaves of (left) modules over a given sheaf of coherent rings. Since we
will work with regular (noetherian) rings, we can safely replace these by categories of finitely generated projective modules
(resp. locally free sheaves of modules).
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issue is to work in the stable co-category of spectra. Below, we will continue to work in a more classical
model theoretic language).

In the context of Dx-modules, Quillen’s result can be stated in a more geometric language, and hence view
it as an instance of microlocalization. Let X be a smooth affine variety over a field k of characteristic zero
and Dx the sheaf of differential operators on X. The sheaf Dx comes equipped with a natural increasing
filtration Dx , by Ox-submodules such that Dy, = 0 for all p < 0, Dx o = Ox, and Up Dx, = Dx.

Furthermore, one has a natural isomorphism gr(Dx) = 74 (Opsx) where 7w : T*X — X is the natural
projection map from the cotangent bundle. Let K(Dx) denote the K-theory of coherent Dx-modules.
Since X is affine, taking global sections induces weak equivalences:

K(gr(Dx)) — K(I'(X, gr(Dx)))

and

K(Dx) — K(I'(X, Dx)).
In particular, Quillen’s theorem gives a diagram of K-theory spectra:

K(Dx) — K(I'(X, Dx)) — K(I'(X, gr(Dx))) — K(gr(Dx)).

Furthermore, since 7 is a vector bundle, the natural push-forward morphism

K(T*X) — K(gr(Dx))
is a weak equivalence. In particular, we have a natural morphism

K(Dx) — K(T*X)

of K-theory spectra. Note that this morphism is a weak equivalence.

Our first result generalizes the previous results to K-theory spectra of sheaves of microdifferential oper-
ators on X, and more generally to arbitrary smooth schemes over a field k.

Theorem 1.0.1. Let X denote a smooth variety over a field k of characteristic zero. Let V. < T*X
denote a conic open subset of the cotangent bundle. Then there is a natural morphism of spectra

K(&x|v) — K(V).
Furthermore, one has a commutative diagram:

K(€x|v) —— K(V)

]

K(Dx) —— K(T*X).
The vertical morphisms in this diagram are given by the natural localization maps.

Locally, in the conical topology on T* X, £x is given by a certain Ore localization of the filtered sheaf
Dyx of differential operators. In particular, the global sections over an open affine conic V' are a Z-filtered
ring. Therefore, in order to obtain the mircolocalization map of Theorem 1.0.1, we first give extension
of Quillen’s theorem to Z-filtered rings. Namely, let (A4, F') be a Z-filtered ring. Suppose B = grg(A) is
noetherian and graded-regular. In this setting, we give a construction of natural morphisms

gra : K(A) > K(B)

compatible with zariki localization. This, combined with Zariski descent for various presheaves of spectra,
allows one to obtain Theorem 1.0.1.
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Note that, in the Z-filtered case, the analog of Quillen’s weak equivalence K(FyA) — K(A) fails to hold.
In particular, the strategy for constructing gr 4 in the positively filtered case, via Quillen’s theorem, is not
applicable. We give a direct construction of this morphism using instead a spectra version of a result due
to Van den Bergh (cf. Theorem 3.1.1). We note that this construction applies also to positively filtered
rings. In particular, we get another construction, a priori different from the one via Quillen’s theorem,
of a microlocalization K(A4) — K(gr(A)). However, we show that the two are naturally identified as
homotopy morphisms (cf. Proposition 3.2.6).

Note that the existence of a morphism
K(Dx) - K(T*X)

for arbitrary (not necessarily affine) smooth X is part of the Theorem 1.0.1 above. This result can be
obtained via a theorem of Hodges ([(]) for smooth quasi-projective varieties over a field k of characteristic
zero. More precisely, Hodges showed that there is a natural weak equivalence of spectra:

K(Dx) — K(X).

The proof proceeds via an induction and a Bertini argument using Quillen’s result in the affine case, and
Kashiwara’s theorem. The proof we give below results from a Zariski decent statement for the pre-sheaf
of spectra associating to an open U < X the spectrum K(Dy). This then gives rise to a morphism
K(Dx) —» K(T*X).

Let Kg(Dx) denote the K-theory spectrum of the category of coherent Dx-modules with support con-
tained in a closed conic S < T*X. As an application Theorem 1.0.1 we construct a natural homotopy
morphism:

Ks(Dx) — Ks(T*X).

Here Kg(T*X) denotes the K-theory spectrum of coherent sheaves on T*X with support in S. Fur-
thermore, this morphism is functorial in S. More precisely, if S < S’, then one has a commutative
diagram:

Ks(Dx) — Ks(T*X)
KSI('Dx) E—d KS/(T*X).

The vertical morphisms are induced by the natural inclusion of categories of modules with support
contained in S into that of modules with support contained in S’. In addition, we have the following
microdifferential operators version of the previous result.

Theorem 1.0.2. Let X be a smooth variety over a field k of characteristic zero. Then one has a natural
morphism

Ks(Ex) £5 Kg(T*X)

such that the following diagram commutes:

Ks(gx) e Ks(T*X)

7

Ks(Dx)
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The above constructions can be extended to the K-theory spectrum of the derived category of Dx
(resp. £x) modules with coherent cohomology. In this setting, if X is proper, then one can identify the
composition

K(Dx) — K(T*X) — K(X) 57 K(k)
with the morphism K(Dx) — K(k) induced by RT'4r(X,-) (i.e. the Dx-module push-forward). As a
result, we obtain another proof of the following theorem ([11], [12]), giving rise to a theory of de Rham
epsilon factors. Let S denote a closed conic in T*X. Let U ¢ X denote an open subset and v a 1-form
on U such that v(U) n S = &&. Let M be a coherent Dx-module (or more generally a perfect complex
of Dx-modules) with singular support in S. Then M gives rise to a homotopy point (cf. section 2.3) of
the Kg(Dx). On the other hand, it also gives rise to a homotopy point of the spectrum K(Dx). The
image of this homotopy point under RI'4r(X,—) is the homotopy point [RT'yr(X, M)]. Let Y denote
the complement of U. Then, since Y is also proper, one has a natural morphism K(Y') — K(k) given by
RI(Y,—).

Theorem 1.0.3. For every v and M as above, there is a natural homotopy point &,y (M) of K(Y) such
that the homotopy point [RT(E,y (M))] of K(k), induced via composition with RT'(Y,—), is naturally
identified with the homotopy point [RTyr(X, M)]. Furthermore, £,y (M) only depends on the values of
M and v on a formal neighborhood of Y .

The determinant philosophy (see section 2.3), allows one to associate to any homotopy point A of K(k)
an object of the Picard groupoid, Pic%(k), of Z-graded lines. Applying the determinant construction to
the homotopy point [RTgr(X, M)] gives the determinant of de Rham cohomology det(RI'4r(X, M)).
Let €,y (M) denote the object of the Picard groupoid associated to

[RT(Evy (M))].
Then the above theorem gives a natural isomorphism:
det(RLqr(X,M)) = e,y (M).
If Y =[] Y; then one has a natural decomposition of epsilon factors:

EV,Y(M) = ®5”7Yi (M)

In particular, if X is a curve, then the above theory gives rise to a theory of de Rham epsilon factors in
the sense ([2]).

A different treatment of de Rham epsilon factors was given in ([12]), where a microlocalization morphism
Ks(Dx) — Kg(T*X)

was constructed directly via the theory of filtered Dx-modules. The approach via filtered Dx-modules
seems more suitable for comparison with the Betti epsilon factors ([1]), since such a comparison would
first require a construction of an analogous theory for analytic Dx-modules. Furthermore, it seems easier
to study the behavior of epsilon factors under push-forward and pull-back in the setting of filtered Dx-
modules ([12], 3.27, 3.28, 3.30). On the other hand, the current approach via microdifferential operators
shows (as a result of 1.0.2) that the local epsilon factors only depend on the £x-module Ex ®-1p, 7 M.
More generally, the construction here give a theory of epsilon factors for £x-modules. The crucial ingre-
dient is the existence of a microlocalization map Kg(Ex) — Ks(T#X), and then we can follow the same
recipe as in the case of Dx-modules explained above. We refer to Section 3.4 for the precise statements.

In the setting of algebraic Dx-modules considered here, we expect that the two homotopy morphisms
Ks(Dx) — Kg(T*X), the one constructed here via microdifferential operators and the one constructed
in ([12]) via filtered Dx-modules, are naturally identified as homotopy morphisms. It is easy to see that
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the two morphisms give the same morphism at the level of K-groups (i.e. at the level of homotopy groups).

One can also use the morphisms s to construct microlocal characteristic classes with supports. For
example, the natural composition

Ko(Ex) — Ko(T*X) — CH*(T*X)

sends M to its characteristic cycle. Therefore, one can use g to construct various micro local charac-
teristic classes on Higher K-theory. We hope to investigate this further elsewhere.

We now describe the contents of each section. In section 2, we recall some background material on
spectra, K-theory, sheaves of spectra, and microdifferential operators. All the material in this section is
standard, and recalled here for the reader’s convenience. In section 3.1, we recall a theorem of van den
bergh at the level of spectra. In section 3.2, we apply this result to construct our microlocalization map
for Z-filtered rings. In section 3.3, we sheafify the constructions of section 3.3. In particular, we give a
proof of Theorem 1.0.2. In section 3.4, we apply these results to construct a theory of de Rham epsilon
factors.

Acknowledgements The construction of epsilon factors given here was a part of the author’s the-
sis ([11]). T would like to thank Alexander Beilinson for numerous discussions and, in particular, for
suggesting to consider the sheaf of micro-differential operators.

2. PRELIMINARIES

In this section, we recall some background material needed in the rest of the paper. The first two sub-
sections recall some standard results on spectra and sheaves of spectra. These sections are essentially a
recap of the corresponding sections in ([1], [12]) and we refer the reader to loc. cit. for details. The third
sub-section recalls some parts of the theory of K-theory spectra and their relation to determinants. Again,
the reader is referred to ([1], [12]) for details. Finally, in the last sub-section we recall the construction
of (algebraic) microdifferential operators following Laumon ([9]).

2.1. Spectra. In this section, we review some basic facts and constructions about the category of sim-
plicial spectra (as in [3]). Recall that a spectrum is a sequence of pointed simplicial sets (P,,)n>0 together
with structure maps o, : S' AP, — P, .1, where S' denotes the one sphere. We denote by S the category
of spectra. The category S comes equipped with a simplicial structure. Given a simplicial set K, we can
define a spectrum K A P whose i-th space is given by K A P, = K A P; with the obvious structure
maps. Here K is the simplicial set given by K disjoint union a base point. This gives rise to the functor
K A -:8 — S which has a natural right adjoint given by P — PX. Then for two spectra P,(Q one can
define a simplicial set Map(P, Q) whose n-simplices are given by:

Map(P,Q)(n) = Homs (P, Q*") = Homs (A, A P,Q).

Given a (pointed) simplicial set K, we denote by |K| its geometric realization. Then the homotopy groups
of a spectrum P are defined by m;(P) = lim ;4 ,, (| P,|) for all ¢ € Z; here the limit is taken over the maps

induced by the structure maps. A morphism of spectra is a weak equivalence if it induces an isomorphism
on the corresponding homotopy groups. A morphism f : P — @ is a cofibration if the induced maps
Py — Qo and P, ugi,.p,_, (S YA Qn_1) — @, are inclusions. The above notions of weak equivalence
and cofibration give S the structure of a stable and proper simplicial model category (see [3], [5]). The
category of spectra has an initial and terminal object. A spectrum is fibrant if the natural morphism
to the terminal object is a fibration and it is cofibrant if the natural map from the initial object is a
cofibration. Finally, the category of spectra has functorial fibrant-cofibrant replacements.
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The homotopy category of S is denoted by Ho(S). By definition, this is the localization of S with respect
to the weak equivalences. A weak equivalence of spectra P — (Q can be inverted as a morphism in the
homotopy category. However, in general such a morphism cannot be inverted as a morphism of spectra.
To remedy this situation, one must use the more general notion of a homotopy morphism of spectra.
A homotopy morphism P — (@ consists of a contractible simplicial set K and a genuine morphism of
spectra f : K A P — ). We refer to K as the base of the homotopy morphism, and by abuse of notation
we shall denote the homotopy morphism by f : P — (. Given two homotopy morphisms f, g with bases
Ky, K,, an identification of f and g is a homotopy morphism h with base K}, together with morphisms
Ky — K, < K, such that f, g are the respective pullbacks of k. One can define the composition of two
homotopy morphisms f: P — @ and g : () — R as the composition Kg A Ky AP - Ko A Q — R. A
homotopy morphism from a sphere spectrum to a given spectrum P will be referred to as a homotopy
point of P. If f and g are identified, then they induce the same maps on homotopy groups.

A weak equivalence between fibrant-cofirant spectra can be canonically inverted as a homotopy morphism.
This is the main reason for working with homotopy morphisms. More precisely, let P,Q be fibrant-
cofibrant spectra and f : P — @) a weak equivalence of spectra. Then, a right homotopy inverse to f
is a pair (g, h,-), where g, is a morphism @ — P and h, is a homotopy A; A @ — @ between fg, and
Idg. Dually, one can define the notion of left homotopy inverses. One has analogs of these definitions for
homotopy morphisms.

Lemma 2.1.1. Let f : P — @ be a weak equivalence of fibrant-cofibrant objects. Then there exists
a canonical right homotopy inverse g, and left homotopy inverse g;. Furthermore, there is a natural
identification of g, with g;.

Proof. See ([12], Lemma 2.1) O

One also has a notion of homotopy sum for spectra. Let I be a finite set. Then one has a canonical
morphism of spectra ey : v P — P induced by the identity on the (i,4)-th component and trivial on
other components. For k € I, let i1y, : P — v P denote the inclusion onto the k-th component.

Lemma 2.1.2. ([12], Lemma 2.8) Suppose P is a fibrant-cofibrant spectrum. Then one has a canonical
homotopy morphism (the sum) X1 : PT — P such that the composition Yreriy : P — P is given by idp.

2.2. Presheaves of spectra. In this section, we give a basic overview of some model structures on the
category of presheaves of spectra, and recall some elementary facts. We refer the reader to ([1]) and (][],
section 3) for an excellent overview of these matters.

Given a category T, let Psh(7,S) denote the category of presheaves of spectra on 7. If P € Psh(T,S),
let ;P denote the associated presheaf of homotopy groups. If 7 comes equipped with a Grothendieck
topology, then we denote by ;P the sheaf associated to the presheaf of homotopy groups. A morphism of
presheaves of spectra f : P — Q is a global weak equivalence if the induced morphism f : m;(P) — m;(Q)
is an isomorphism. A morphism f : P — Q is a local weak equivalence if the induced morphism
f 7 (P) - w3(Q) is an isomorphism. We say that f is a global cofibration if f : P(U) — Q(U) is
a cofibration for all U € T. A morphism f is a global fibration if f : P(U) — Q(U) is a fibration for all
UeT.

The global projective model structure on Psh(T,S) is given by the global weak equivalences and global
fibrations. The cofibrations are then defined to be those morphisms which have the left lifting property
with respect to the acyclic fibrations. This gives Psh(7T,S) the structure of a stable proper simplicial
model category. The cofibrations in this model structure will be referred to as global projective cofi-
brations. If f is a global projective cofibration, then the induced morphisms f : P(U) — Q(U) are
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cofibrations. (However, the converse is false.)

The local injective model structure on Psh(T,S) is given by the local weak equivalences and the global
cofibrations. The fibrations are then defined to be those morphisms which satisfy the right lifting property
with respect to the acyclic cofibrations. This gives Psh(7,S) the structure of a stable proper simplicial
model category. We fix a functorial fibrant replacement P — H(—, P) in the local injective model struc-
ture. We will say that P satisfies descent for T if the canonical morphism P — H(—,P) is a global weak
equivalence. We let RI'(T,P) = limyo H(—, P). The fibrant objects in the injective model structure are
characterized by a homotopy descent property.

In the following, we shall mostly play with the Zariski topology on a smooth scheme X or the conical
topology on the corresponding cotangent bundle. If F is a presheaf of spectra in either of these two
topologies, then to check that it satisfies descent it enough to check that if U, V' are open affines in X
(resp. of T*X), then one has a cartesian square of spectra:

FULV)—— F(V)

| J

FU)——FUnYV)

In practice, this amounts to having a localization sequence for closed subschemes and an excision property.

If 7' < T is a subcategory (with induced topology) then we have a canonical restriction functor
Psh(T,S) — Psh(T",S).

Suppose every object of T has an open covering by objects in 7', and every T -covering of an object in T’
has a T’-refinement. Then the induced functor on homotopy categories is an equivalence. In particular,
a fibrant-cofibrant object of Psh(77,S) (in the local injective model structure) object can be canonically
lifted to a fibrant-cofibrant object of Psh(7”,S).

Suppose T’ < T is as in the previous paragraph. Let F denote a fibrant-cofibrant object of Psh(T,S).
Then, let 7' denote the presheaf on 7~ whose sections over an open U are given by the homotopy limit
of F(V) over all open V in T’ such that V is in a 7" covering family of U (i.e. V is a T'-open of U).
Then the natural restriction map F — F7 is a global weak equivalence. We shall use this statement
to reduce constructions on various presheaves of K-theory spectra on a scheme X to their counterparts
over affine opens in X. For example, suppose F is a presheaf of spectra on the Zariski site of a scheme
X such that F satisfies descent. Let F%/f denote the presheaf whose sections over an open U — X are
given by the homotopy limit over all V' such that V is an affine open in U. Then the natural morphism
F — FfI_ given by restriction, is a global weak equivalence.

Let p: X — Y denote a morphism of schemes and F a presheaf of spectra on X. Note that the push-
forward p,F satisfies Zariski descent iff F satisfies Zariski descent. If X is smooth, then one can apply
this to the natural projection T#*X — X, where T* X is the cotangent bundle.

Let F and G denote presheaves of spectra on a site. A homotopy morphism ¢ : F — G is given by a
datum of homotopy morphisms ¢y : F(U) — G(U), for each open U, such that for each open V of U,
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the following diagram commutes:

FU)——G(U)

|

FV)——=G(V).
Recall, a diagram of homotopy morphisms, as above, is said to commute if the two resulting homotopy
morphisms
FU)—G(V)

are identified.

2.3. K-theory spectra. Let £ be a small exact category. Then Quillen’s K-theory construction gives
a functor from the category of small exact categories to the category of spectra. Since S has functorial
fibrant-cofibrant replacements, we assume from now on that the associated spectrum K(&) is fibrant-
cofibrant. If F : &1 — & and Fy : &5 — &3 are exact functors, then one has K(Fy) o K(Fy) = K(Fy 0 Fy).
More generally, a natural isomorphism of functors induces a canonical homotopy identification of the
corresponding morphisms of K-theory spectra. By taking a large enough Grothendieck universe, we may
assume all our categories are small.

More generally, Waldhausen associates to any category with cofibrations and weak equivalences a corre-
sponding K-theory spectrum. Furthermore, an exact functor between Waldhausen categories induces a
morphism between the corresponding spectra. In this article, we shall mostly be interested in complicial
bi-Waldhausen categories and complicial exact functors; we refer the reader to ([14]) for details. If £ is
an exact category, then C?(&) is a complicial bi-Waldhausen category with weak equivalences. We refer
the reader to ([14]) for details. A fundamental result of Thomason—Trobaugh—Waldhausen—Gillet ([14])
shows that the inclusion of £ into C*(£) as degree zero morphisms induces a canonical weak equivalence
of spectra K(£) — K(C?(£)). Here the right side is the Waldhausen K-theory spectrum associated to
C*(&). This allows us to canonically identify various Quillen and Waldhausen K-theory spectra. In the
following, we shall always assume all our spectra to be fibrant-cofibrant. In particular, the machinery from
the previous section will allow us to invert various weak equivalences canonically as homotopy morphisms.

Given a Waldhausen category A, we denote by A" the associated homotopy category given by inverting
the weak equivalences; note that this is a triangulated category. If F': A — B is a complicial exact functor
between two complicial bi-Waldhausen categories such that the induced map on homotopy categories is
an equivalence of categories, then the induced map on K-theory spectra is a weak equivalence. We will
often consider derived functors which are a priori only defined on A'. Usually, these can be lifted to
functors on certain full complicial bi-Waldhausen subcategories C < A such that the inclusion induces an
equivalence on the associated triangulated categories. Using the formalism of homotopy morphisms, we
can lift the derived functor to a morphism of K-theory spectra. A typical application is the following:
Let X be a proper scheme over k, and let K(X) be the K-theory spectrum of perfect complexes on X.
Since X is proper, we can define RI : Dgerf(X ) — Dgerf(k). The above approach allows us to lift this to
a homotopy morphism RT : K(X) — K(k), where K(X) is the K-theory spectrum of the category of per-
fect complexes on X and similarly for K(k). First, we may consider the (full) complicial bi-Waldhausen
sub-category of perfect complexes of flasque sheaves. On this subcategory, RI" is represented by I'. Fur-
thermore, the properness assumption implies that I" preserves perfectness. We refer to the article by
Thomason-Trobaugh ([14]) for more details.

We conclude this section with some remarks on K-theory spectra and determinants. We refer to ([12],
section 5) for details. Given a Waldhausen category A, any object F' in A gives rises to a homotopy point



10 DEEPAM PATEL

[F] of the associated K-theory spectrum K(A). In the situation of an exact category &, this construction
gives a canonical homotopy point [F] of K(C®(£)) for all F € Ob(C?(€)). Furthermore, to any [0,1]-
connected -spectrum K we can associate a canonical Picard groupoid denoted by II(K); any homotopy
point of K gives rise to an object of the associated Picard groupoid. For any spectrum K, we can
functorially associate a [0, 1] connected Q-spectrum denoted K[ with a morphism K — K[, In the
case of K(C?(£)), we can apply the above to get an object Det(z) € TI(K(C?(E))I%!) for any homotopy
point = of K(C®(€)). Furthermore, the homotopy point construction induces a determinant functor Det :
(CP(&),w) — TI(K(C®(E))*M), which is a universal determinant functor in the sense of Knudsen ([3]).
This functor factors through the derived category (D?(£),qis) — II(K(C?(£))%1) as a tensor functor.
Here D®(€) has tensor structure coming from the additive structure. Furthermore, an identification of
homotopy points gives rise to an isomorphism of the corresponding determinants. If x and y are two
homotopy points of K(C?(£)), then one has a canonical isomorphism -, : Det(z) ® Det(y) — Det(z + y);
here = + y is the homotopy sum described in 2.1.

Remark 2.3.1. If F and G are objects in a Waldhausen category A, then the homotopy point [F' @ G|
of the direct sum of F and G in A is identified with the homotopy sum [F] + [G].

Let Pic?(k) denote the Picard groupoid of Z-graded lines on k, whose objects are ordered pairs of one
dimensional k-vector spaces and an integer n, the degree of the line. Then there is a canonical determinant
functor det : C®(k) — Pic(k). If V is a vector space in degree zero, this functor sends V to the usual
determinant line graded by the dimension of the vector space. In the particular case of a scheme X
proper over k, the determinant of RT'(X, F) is just the usual determinant of cohomology graded by the
Euler characteristic. If S is a scheme, then we can define the Picard groupoid Pic”(S) of Z-graded lines
on S. The grading will be a Z-valued locally constant function on S. Then, as in the case of a field, one
has a determinant functor detg : C’SET 1 (8) — Pic%(S). By universality, there is a canonical morphism of

Picard groupoids Detg : II(K(S)) — Pic%(S) such that the following diagram commutes:

Ol () 2 TI(K(S))

det
\ chts

Pic%(S).

In particular, if A and B are perfect complexes, then the image of Dets(-[41;5]) is just the usual isomor-
phism dets(A) ® dets(B) — dets(A @ B).

Suppose we have an exact functor of exact categories & — E;. Then we get an induced map F : K(&;) —
K(&;). If A e Ob(&;), then there is a canonical identification of the homotopy points F'([A]) and [F(A)].
Furthermore, an identification of homotopy points gives rise to an isomorphism of the corresponding
determinants. One has a similar statement for K-theory spectra of Waldhausen categories.

2.4. Microdifferential operators. In this section, we recall the construction of the sheaf of microdif-
ferential operators following Laumon ([9]). We refer to ([10]) for the relevant results on filtered rings and
modules.

A filtered ring is a pair (A, A;) consisting of a (not necessarily commutative) ring A with an increasing
filtration by subgroups A; such that A;A; < A;;; and ¢ € Z. The filtration is exhaustive if U;A; = A.
A filtration is separated if n;A; = e. In the following, we shall assume all our filtrations are exhaustive
and separated. A filtered module over (A, A;) is a pair (M, M;) consisting of an A-module M with an
increasing filtration by subgroups M; such that A;M; < M;;;. The filtration M; on M is said to be
good if there exist mq,...,m, € M and kq,...,k, € Z such that M; = E;ZlAi_k].mj. Again, we shall
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assume that the filtration on M is separated and exhaustive. Any finitely generated A-module has a
good filtration.

A morphism of filtered rings f : (A, A;) — (B, B;) is a homomorphism of rings f : A — B such that
f(A;) € B;. We say that f is strict if f(A;) = f(A) n B;. We can similarly define morphisms and strict
morphisms of filtered modules.

Given a filtered ring (A, A;), we let gr.(A) = ®gr;(A) where gr;(A) = A;/A;_1. Thus gr. is a Z-graded
ring. Any filtered module (M, M;) gives rise to a graded gr.(A)-module gr. (M) = @gr;(M). In the
following, we shall denote by gr(A) or gr(M) the underlying ring or module (forgetting the grading).

Given a filtered ring (A, 4;), the completion (A, A;) is defined as follows. Let
A; =1im Ai/Ai_,.

n
The inclusions A; < A; for ¢ < j induce natural injective homomorphisms A; — Aj giving rise to an
inductive system; one defines A = li_n}i A;. The multiplication maps A; x A; — A;;; induce morphisms

Ay x flj — A,-H. In particular, one has a ring structure on A. If the canonical morphism (A, 4;) — (fl, fli)
is an isomorphism, then we will say that (A, A;) is complete. These notions can be generalized to filtered
(A, A;)-modules. Furthermore, by ([9], A.1.1), if (4, A;) is complete and gr(A) is noetherian, then a
filtration is good if and only if gr(M) is finitely generated. By (][9], A.1.1.1), if (A, A4;) is complete and
gr(A) is (left or right) noetherian then A and Ag are also (left or right) noetherian. We shall assume
from now on that gr(A) is noetherian.

There is an alternate construction of the completion via the Rees ring. Let A[v,v~!] denote the ring
of Laurent polynomials in v over A graded by setting deg(v) = 1. Consider the graded subring A. =
@icz AVt If (M, M;) is a filtered (A, A;)-module, then we can define the graded A.-module

M. = ®iczMv' € M @4 Alv, v 1.

The resulting functor from filtered (A, A;)-modules with exhaustive filtration to the category of graded
A. modules with v a non-zero divisor is an equivalence of categories. For each n > 1,let A.,, = A. /" A..
This gives rise to a projective system

— A1 2 A, — > A =gr(A).

One has A; = Linn A; , and A= h_I)l’lz @n A; n. One has a similar description for filtered (A, A;)-modules.

Let A be a unital ring and S < A a multiplicative subset. Then a localization of A with respect to S
is a ring Ag with a homomorphism ¢ : A — Ag such that ¢(s) is invertible for all s € S and for any
homomorphism f : A — B such that f(s) is invertible for all s € S, there exists a unique homomorphism
f'+ A" —> Bsuch that f = f'o¢. If for all s € S and a € A, there exists n € N such that ad(s)"(a) = 0,
then A admits a localization with respect to S. Furthermore, the natural morphism A — Ag is flat.

Let (A, A;) be a complete filtered ring and S; < gr.(A) a homogeneous multiplicative subset. For all
n =1, let S, < A, denote the inverse image of S; under the natural map A.,, - A.;. Let S < A
denote the multiplicative subset given by s € A, such that s € A; for some ¢ with image in gr; A lying in .S.
Suppose from now on that gr.(A) is commutative. Then each S, is a multiplicative subset satisfying the
ad condition of the previous paragraph. In particular, the localization of A. ,, at S, exists. Furthermore,
the resulting localizations A. ,, g form a projective system. This gives a complete filtered ring (A4’, A}) by
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setting
Aj =lim A; s and A" = lim lim A; ,, 5.
n 7 n
One has a natural homomorphism of filtered rings ¢ : (4, A;) — (A’, A,) which induces the usual local-
ization at the level of associated graded rings. Since we assume that gr(A) is noetherian, the resulting
localization is a flat morphism of filtered rings ([9], A.1.1.3). These constructions can be generalized to
complete filtered modules.

Let R. = ®;>0R; be a graded commutative ring. We let R denote the underlying commutative ring.
Then Ry is a commutative ring and we may consider X = Spec(Ry), and V = Spec(R). Let V' denote
the topological space where the underlying set is V' and the topology is generated by D(f) where f is a
homogeneous element of R. The identity induces a continuous map € : V' — V’. The natural projection
V % X has a canonical factorization

V—v X

We consider V’ as a ringed space with structure sheaf given by €, Oy .

Suppose now that (A, A;) is a filtered ring such that A; = 0 for ¢ < 0, u;4; = A, and gr.(A4) is
commutative (and noetherian). It follows that (A, A;) is complete and Ay is commutative. If X =
Spec(Ap), then (A, A;) gives rise to a quasi-coherent Ox-algebra A with a filtration by quasi-coherent
Ox-submodules A;. We may define A. and A. ,, as before. If we set R. = gr.(A) in the previous paragraph,
then we have V' = Spec(gr.(A)). Given a basic open D(f) of V', we can consider the localizations A. ,,(f)
of A, at the multiplicative set Sy = {f™|m € N}. This gives a presheaf on V'. Let B, denote the
associated sheaf on V'. The B/, form a projective system equipped with a canonical isomorphism of
projective systems (A. ,)n — P ((B.,,)n). The projective system (B ,,), gives a sheaf of complete filtered

rings (B, B) on V'. By ([9], A.3.1.2), for all homogeneous f € gr.(A), one has a canonical isomorphism:
(Aa Ai)Sf - F(D(f)a (Bla Bi))

The microlocalization of (A, A;) is the sheaf (B,B;) := ¢ *((B’,B})) on V. One has canonical flat mor-
phisms p~1 (A, A;) — (B,B;) and p'~* (A, A;) — (B, B))

We may apply the constructions of the previous paragraph to the case where A = Dy is the sheaf of
differential operators on a smooth affine variety X and A; = Dx ; is the filtration by order of differential
operator. In this case, V is simply the cotangent bundle T7#* X, and V' is the cotangent bundle with the
conical topology. We shall denote the latter ringed space by T*X¢ and € : T*X — T*X¢ the correspond-
ing morphism which is the identity on the underlying topological space. The resulting microlocalization,
denoted (€x,Ex..), is the sheaf of micro-differential operators on the cotangent bundle T7%X. We shall
denote by £% the corresponding sheaf on 7% X°. Since all the constructions above are functorial, we can
extend these constructions to an arbitrary smooth variety X.

3. K-THEORY OF GRADED RINGS

Let R be a Z-graded (or Z x Z-graded) regular” ring. Denote by K9(R) the K-theory spectrum of the
category of finitely generated graded R-modules. In the following we shall consider left modules and the
corresponding K-theory spectra. All the categories in this section will be exact and we shall play with
Quillen K-theory spectra. These can be replaced by the corresponding Waldhausen versions (which we
shall do in the next section).

2A graded regular ring is a noetherian ring such that every graded (left) module has finite projective dimension.
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Remark 3.0.1. Let K9 (R) denote the K-theory spectrum of graded R-modules which are (graded)
projective and finitely generated. Then one has a canonical homotopy morphism Kgl(R) — K9(R) which
is induced by the inclusion. This morphism is a homotopy equivalence by regularity. We have chosen
fibrant-cofibrant models for our K-theory spectra and so this morphism has a canonical inverse (as a
homotopy morphism). We shall use this to identify these two spectra.

3.1. Homotopy Invariance for graded K-theory. In the following, let R be a Z-graded regular noe-
therian ring with S = R[x]. We consider S as a Z x Z-graded ring with grading given by S, ,,, = R,2™.
Similarly, we consider S[y] and S[y,y~!] as Z x Z-graded rings setting deg(y) = (—1,1).

Let Mod® (R) denote the category of finitely generated graded R-modules. Given a graded R-module
M, let M(—1) denote the graded module whose underlying module is the same as M, but the grading is
shifted by one. In particular, M(—1),, = M,,_1. Then one has a natural shifting of degree functor

t : Mod® (R) — Mod®'(R)

where t(M) := M(—1). In ([15]) Van den Bergh shows the existence of a long exact sequence in graded
K-theory

= KIR) S KIR) G (R) = -
where f f is the morphism induced by the forgetful functor from graded to un-graded R-modules.

The main goal of this section is to prove a spectrum analog of the above theorem. The proof is the same
once translated in the right language. We include it here for the sake of completeness.

Theorem 3.1.1. The functors t and ff induce a homotopy cofibre sequence of spectra:
KI9(R) - K9(R) — K(R).
Proposition 3.1.2. One has a homotpy cofibre sequence of K-theory spectra:
K9(S) — K?(S[y]) — K*(S[y,y~ ')

Proof. This follows from Quillen’s localization theorem applied to the category. A = {S[y]—graded modules}
and B = {S[y] —graded modules where y acts nilpotently}. The quotient A/B is naturally identified with
the category of finitely generated graded S[y,y~!]-modules. Therefore, the localization theorem gives a
homotopy cofibre sequence:

K9(B) — K¥(S[yl) — K*(STy,y~']).
Furthermore, the resolution theorem shows that the natural morphism K9(S[y]/yS[y]) — K(B) is a
homotopy equivalence. Finally, identifying S[y]/yS[y] with S gives the desired cofibre sequence. O

Remark 3.1.3. Let f denote the morphism K9(S) — K9(S[y]) from the previous lemma. Then f is
simply induced by the functor which sends a S-module M to M considered as a S[y]-module with trivial y
action. We can also consider the S[y]-module M[y] := S[y] ®s M. One has the following exact sequence
relating these two functors from S-modules to S[y]-modules:

0— M[y](1,-1) »> M[y] - M — 0.

If we let F' denote the functor which sends M to M[y](1,—1) and G denote the functor which sends M
to MJy], then the above exact sequence gives a homotopy between f : K9(S) — K9(S[y]) and G — F.
Furthermore, if

H : {graded — S[y] — modules} — {graded — S[y] — modules}

denotes the functor which sends M to M(1, —1), then F' = HoG. Thus, we have a homotopy identification
f=2=({Id—H)oG



14 DEEPAM PATEL

The following lemma, due to Van den Bergh, is a doubly graded analog of the proposition in section 3 of

Quillen ([13]).

Lemma 3.1.4. Let C be a Z x Z=¢ graded ring. Let K9(C) be K-theory spectrum of finitely generated
(Z x 7.) graded projective C-modules. Then K9(C) is a Z[t,t~1]-module where t acts by sending M to
M(0,—1) and t=1 acts by sending M to M(0,1). One has a Z[t,t=*]-module isomorphism:

Z[t,t 1 @z K{(C_0) — KI(C).

Proof. Let P € P := {Z x Z — graded projective—C—modules}. Let F},P be the C-submodule of P
generated by P_, = @;F;,, for n < k. Let Pq be the full subcategory of P € P consisting of P such
that F_,_1P = 0 and F,P = P. One has T : P — {graded projective — C_ o — modules} where P goes
to C_ o ®c P. Then P is non-canonically isomorphic to C ®c_, T(P) = u,C(0,—n) ®@c_, T(P)_ ».
Hence, P — F}P is an exact functor and F,,P/F,_1P — C(0, %n) ®c_, T(P)_, is an isomorphism.
One has Id = ®_4<i<qFi/Fi—1 : Py — P, gives an isomorphism U _,<;< t’' ® K (C_ o) — KY(P,). Since,

quq = P, the result follows. O

Note that for our applications the ring in question will always be regular noetherian and so we can apply
the previous lemma to K-theory spectra of finitely generated modules as well. In particular, we may
apply Lemma 3.1.4 to C = S[y] or C' = S where S = R[x] with the grading given above. This gives rise
to isomorphisms:

Zlt,t™ ] ®z K{(S[yl_0) — K{(S[y)),
Z[t, ' @z K{(S_0) — K{(S).

Furthermore, S[y]_o = R = S_p. In particular, we have a commutative diagram:

Z[t,t7'] @z K (R) —— K{(9)

| |

Z[t,t7" @z K (R) —— K{(S[y])

Here the horizontal arrows are isomorphisms and the left vertical is defined by the commutativity of the
diagram. The explicit description of f given in Remark 3.1.3 shows that the left vertical is given by the
composition:
Z[t,7] @2 K (R) — Z[t,t7] @, KI(R) — Z[t,t7] @, K!(R),

where the first arrow is induced by sending a Z-graded R-module M to M (1), and the second map is
given by multiplication by (1 —t). It follows that f is injective and the cokernel is given by K?(S[y,y~'])
(Proposition 3.1.2). Since the cokernel of the left column is KY(R) one has an induced isomorphism
KY(R) — K?(S[y,y~']) where the map is induced by extension of scalars. In particular, we have the
following corollary.

Corollary 3.1.5. The natural morphism induced by extensions of scalars
K(R) — K*(S[y,y~'])
is a weak homotopy equivalence.

Lemma 3.1.6. ([15]) Let S be a Z x Z-graded ring. Let S’ be the associated Z-graded module with grading
Sy = 23j Sn—j,j- Then one has an equivalence of categories:

{S[z, 2] — graded modules, deg(z) = (—1,1)} — {S’ — graded modules}.
The functor is induced by sending M to M /(x — 1)M.
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Proposition 3.1.7. The natural inclusion R — R[z] induces a weak homotopy equivalence of spectra:
K?(R) — K?(R[z]).
Proof. The morphism K9(R) — K9(R[x]) factors as
K9(R) — K?(S[y,y']) — K9(R[x])
where the second morphism is induced by sending M to M/(y — 1)M. By Corollary 3.1.5 the first

morphism is a weak homotopy equivalence. On the other hand, the previous lemma gives that the second
morphism is also a weak homotopy equivalence. O

Proof. (Theorem 3.1.1)
Proceeding as in the proof of Proposition 3.1.2, one can show that there is a homotopy cofibre sequence:
K9(R) — K?(R[z]) — K*(R[z,27"]).
The first map f is given by sending M to itself with trivial 2 action. Then the exact sequence
0— M[z](-1) > M[z] > M — 0,
where the first map is multiplication by x, gives a commutative diagram of homotopy morphisms of

spectra:

K9(R) — K9(R[z])

N
K9(R).

Since the vertical arrow is a homotopy equivalence by the previous proposition, we can deduce a homotopy
cofibre sequence:

K?(R) — K9(R) — K?(R[z,27])

where the first morphism is given by 1 —¢. One also has a commutative diagram:

K9(R[z]) —— K9(R[z,271])

\ J

K(R)
Here ff is given by the forgetful functor and the right vertical is induced by sending M to M /(x — 1) M.
The vertical map is a weak homotopy equivalence since the functor from graded R[z,x~!]-modules to
R-modules induced by sending M to M /(x — 1)M is an equivalence of categories. Therefore, one has a
homotopy cofibre sequence

K9(R) ——% K9(R) L5 K(R).

O
3.2. Construction of the microlocalization for K-theory of rings. Let (A, F) be a complete Z-
filtered ring. We shall assume B = grp(A) is noetherian and graded-regular. Let A = Y F,z"

Alz,271]. Tt follows that A and A are also noetherian and regular (graded-regular). In this section, we
apply the results of the previous section to construct a morphism of spectra

K(A) — K(B)

and study some of its properties.



16 DEEPAM PATEL

We consider A Alz,271] as a graded subring with z in degree one. Note that the Ore localization of
A at the set S = {1,z,22,...} is isomorphic to Az, z~!]. The following lemma is due to Quillen in the
case of positively filtered rings ([13], proof of Thm. 7). The proof in the case of Z-filtered rings as above
is exactly the same.

Lemma 3.2.1. Let (A, F) be as above. Then one has a homotopy cofibre sequence of spectra:

K9(B) — KI(A) — K(A).
Proof. Let A denote the category of finitely generated graded A-modules, and B < A denote the full sub-
category of modules with nilpotent z action. Then Quillen’s localization theorem gives a fibre sequence:

K(B) - K(A) — K(A/B).
The devissage theorem shows that the natural morphism K9(B) — K(B) is a weak homotopy equivalence.
Furthermore, the quotient category C = A/B is naturally equivalent to the category of finitely generated

graded Ag-modules, where S = {1, z, 22, .. .}. The latter category is equivalent to the category of finitely
generated A-modules. O

We now explain how to apply the previous results to obtain natural homotopy morphism of spectra
gra : K(A) - K(B).

Applying Theorem 3.1.1 to the Z-graded ring B, gives a natural homotopy cofibre sequence
K9(B) —% K9(B) —— K(B) .

The natural quotient map A — fl/z[l = B induces a morphism of K-theory spectra

g:K(B) > K(A).
On the other hand, one has an exact sequence of graded rings
0— A(-1) > A — B -0,

where the first map is given by multiplication by z. In particular, B is of (graded) Tor-dimension 1 over
A and, for M a finitely generated B-module, Tory (B, M) = M and Tori (B, M) = M(—1). It follows

that if g : K9(A) — K9(B) denotes the morphism induced by extension of scalars, then the above exact
sequence (i.e. resolution of B as A-module) gives a homotopy between go¢ and 1 —¢ : K9(B) — K9(B).

One has a commutative diagram of homotopy morphisms:
K9(B) —— K9(A) —— K(A)

Id g9

1-t If
—

K9(B) K9(B) —— K(B)

We've seen that the bottom row is a cofibre sequence (Theroem 3.1.1), and the top row is also a cofibre
sequence by Lemma 3.2.1. It follows that there is a canonical homotopy morphism gr : K(A) — K(B)
making the above diagram commute. The choice of K(A) — K(B) is canonical upto a choice of homotopy
making the first diagram commute. However, we have fixed such a homotopy (determined by the exact
sequence 0 — A(—1) - A — B — 0).

Let (A, F) be a complete Z-filtered ring as before and suppose B = grg(A) is noetherian and graded-
regular. Suppose (A’, F) is another Z-filtered ring with B’ = grpr(A’) satisfying the same assumptions

as (A, F). Let (A, F) ER (A, F') be a morphism of filtered rings and B I B and A L A the induced
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morphisms. We shall assume that A’ (resp. B’, A’) is flat as a right module over A (resp. B, A).
* r(f)*
In this case, extension of scalars induces natural morphisms K(A) 4 K(4"), K(B) ? 9 K(B'), and

K(A) 55 k(A7)

Remark 3.2.2. We shall mainly be interested gr(A) is commutative, and where (A’, F') is an appropriate
micolocalization of (A4, F'). In this case, the flatness condition will follow from general results on flatness
of localization.

The morphism constructed above is essentially a microlocalization morphism at the level of K-theory
spectra of rings. The following proposition will allows us to glue these morphisms to obtain a microlo-
calization morphism for K-theory spectra of sheaves of microdifferential operators.

Proposition 3.2.3. Let A and A’ be as above. The following diagram of homotopy morphisms is naturally
homotopically commutative:

K(A )%K(B

lf* qu(f)*

K(A') 225K (B)
Proof. We first note that the squares in the diagram

K9"(B) —— K9 (A) —— K(A)

97'(f)*l (a) J

K9 (B') —— K9 (A') —— K(4')

el
—
S
~
—
<
*

are naturally homotopy commutative. Let us first prove that square (a) is homotopy commutative. The
top horizontal arrow in (a) is induced by push-forward along the quotient map i‘: A— A/zA = B.
Denote the induced morphism on K-theory spectra by i and similarly for z . We need to show that the
homotopy morphisms f* o i4 and if/ ogr(f)* are naturally identified. At the level of categories, the first
composition sends a graded B-module M to M ®; A’ and the second sends M to M ®p B’ considered
as a A-module via . On the other hand, these two functors are naturally isomorphic since one has
natural isomorphisms M ®p B’ ~ M ®p (B®j; [1/) M®A A’ In the case of square (b) both horizontal
arrows are induced by pull back via the quotient map A — A/z —14 = Aand A’ — A'/z —1A’ = A'. In
this case, the result follows from the usual associativity of tensor products.

One also has a naturally homotopy commutative diagram:

K9"(B) — K9 (B) — K(B)
J (e) J{ (d) l
Ko7 (B') —= K9 (B') — K(B')
Since ¢ and 1 commute with base extension, it follows that (¢) is naturally homotopy commutative.

Similarly (d) also commutes since the horizontal map in (d) are induced by the forgetful functor. It
follows that one has a diagram
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Ko"(B) gra
K97 (A K(B)
/Kgr( ) s K(A')
_— /
Ko (B') ora
Ko (A) K(B')

in which all squares commute (i.e. the resulting homotopy morphisms are identified as homotopy mor-

phisms) except for the rightmost vertical square and all horizontal arrows are homotopy cofibre sequences.

It follows that one has a natural identification of the homotopy morphisms gr(f)* o gra and gras o f*.
O

If (A, F) is, in addition, a positively filtered ring, then an alternate construction of gr4 follows from the
following theorem of Quillen.

Theorem 3.2.4 (Quillen). Suppose (A, F) be a Z filtered ring as above with F,, = 0 for alln < 0. Then
if B is of finite Tor dimension as a Fy(A)-module and Fy(A) is finite Tor dimension as a B-module,
the natural homotopy morphism induced by the inclusion K(Fy(A)) — K(A) is a weak equivalence, and
therefore, has an inverse as a homotopy morphism.

Corollary 3.2.5. Let (A, F) be as in the previous theorem. Then one has a natural homotopy morphism
gr9 : K(4) - K(B).

Proof. By the previous proposition one has K(Fy(A)) — K(A). Taking its inverse as a homotopy mor-
phism and then composing with K(Fy(A4)) — K(B) gives the required map. Note that in this case the
latter map is also weak equivalence since B has finite Tor dimension over Fy(A). O

We have the following compatibility between gr 4 and gr defined in the previous section.

Proposition 3.2.6. For (A, F) as in Quillen’s theorem above the two homotopy morphisms gri2 and gra
are naturally identified as homotopy morphisms.

Proof. This follows from the fact that one has a commutative diagram

K9(B) —— K9(A) L K(A)

N

K9(B) — K9(B) L K(B)
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since a choice of homotopy identification for the left square determines the right vertical arrow up to
unique homotopy identification. But, we have fixed a homotopy identification for the left square. To see
that the diagram is commutative we need only show that the right square is commutative. In particular,
we need to construct a natural homotopy identification between the homotopy morphisms gri2 o j% and
ffog. One has a factorization grg : K(A) —» K(Fyp(A)) — K(B). The first arrow is the canonical
homotopy inverse of the natural extension of scalars K(Fy(A)) — K(A). It follows that it is sufficient to
note that the following diagrams are commutative:

K9(4) ——K(4) K9(A) ¢+—— K(Fy(4))

and

K(Fy(A)) K9(B) — K(B).

For the first diagram all the morphisms are given by extension of scalars and so there is a natural
homotopy identification induced by associativity of tensor product. The commutativity of the second
diagram follows by a similar argument since all the morphisms are again given by extension of scalars. [

3.3. Microlocalization for K-theory of sheaves. In this section, we globalize the K-theory microlo-
calization morphism to sheaves of rings. As before, let X denote a smooth variety over a field k of
characteristic zero. Recall £ is the sheaf of microdifferential operators on T*X¢, where T*X° denotes
the cotangent bundle with the conical topology. We consider the latter as a ringed space with structure
sheaf given by Orxxe := €,Opxx, where € : T*X — T*X°¢ is the natural morphism of ringed spaces
given by the identity on the underlying topological spaces. We refer to section 2.4 for the details. The
associated graded of £% is canonically isomorphic to the structure sheaf Opx xc. The main goal of this
section is to globalize the constructions of the previous sections to get natural homotopy morphisms of
K-theory spectra:
K(&xe|v) = K(Orsxe|v)

where V' is a conic open subset, which are functorial in V. In particular, we shall construct such a
morphism at the level of presheaves of spectra. First, we begin with an analogous construction for the
sheaf of differential operators.

Remark 3.3.1. Below, we work with pre-sheaves of K-theory spectra. These are obtained by first
composing a pre-sheaf of Waldhausen or exact categories with the K-theory spectrum. In general, the
underlying pre-sheaf of categories is a pseudo-functor. However, a well-known strictification procedure
allows one to replace this with a strict functor, and thereby obtain pre-sheaves of spectra. We refer to
([7], Chapter 5) for details on this strictification procedure in the setting of Waldhausen categories.

Let Kp,, denote the presheaf of spectra on X given by assigning to U < X the K-theory spectrum K(Dy).
Recall that the natural morphism
K(Dx) — K(C"(Dx))

is a weak equivalence, where C®(Dx) is the Waldhausen category of perfect complexes of Dy-modules.
Since X is smooth, we could also take instead the category of bounded complexes of coherent D x-
modules. Since we assume all our spectra are fibrant-cofibrant, we may canonically invert this morphism
as a homotopy morphism. We shall use this to identify the two spectra. Note that we have the same
result if we use instead the bounded derived category of all modules with coherent cohomology. If Z < X,
then let Kz(Dx) denote the K-theory spectrum of the category of perfect complexes of Dx-modules with
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supports in Z. Again, we may consider (bounded) complexes with coherent cohomology instead (or
equivalently, bounded complexes of coherent D x-modules).

Proposition 3.3.2. The presheaf of spectra Kp, satisfies descent in the Zariski topology on X. In
particular, it is fibrant for the local injective model structure.

Proof. Recall, we must show that the given sheaf satisfies the Mayer-Vietoris property. On the other
hand, for this it is enough to show that excision holds. In particular, it is enough to show that if
Z < U c X, where U is open in X and Z is closed, then one has a weak equivalence:

Kz(Dx) g Kz(DU)

Let DZC’ 7 (Dx) denote the bounded derived category of quasi-coherent Dx-modules with support in Z.

Note that the compact objects in this category are precisely the perfect complexes. Therefore, it is enough
to show that the natural restriction map

DZC,Z<DX) - DZC,Z(DU)
is an equivalence of categories. For this note that the D-module push-forward induces a morphism
Rjy : D} 2(Dy) — D). 4(Dx).

To see this, use the fact that for open immersions D-module push-forward is given by the usual push-
forward of quasi-coherent sheaves and base change. Finally, note that the unit (resp. counit) 1 — Rj,oj*
(resp. j* o Rj, — 1) is an isomorphism when restricted to category of complexes supported on Z.

O

Let Krxx denote the presheaf of spectra in the Zariski topology on T*X whose sections over an open
U are given by K(U). Recall that this presheaf satisfies descent in the Zariski topology on T*X. In
particular, it is fibrant for the local injective model structure. In the following, for a Zariski open U, we
let U/ denote the set of affine opens in U. If F is a presheaf of spectra on X, we let F2/f denote the
presheaf of spectra whose sections over an open U are given by holimy crars F(V). If F is fibrant, then
by the remarks at the end of section 2.2, the natural morphism F — F%/f is a global weak equivalence.

Theorem 3.3.3. There is a natural homotopy morphism gr : Kp, — p«Krsx of presheaves of spectra
on X. In particular, one has an induced homotopy morphism on global sections:

K(Dx) — K(T*X).
Proof. By the previous proposition and the remarks above, the natural morphism Kp, — IC“DJ;f is a

global weak equivalence. Similarly, the natural morphism psKr+x — (pKr+x)?/ is a global weak
equivalence. Therefore, it is enough to construct a morphism

gr: IC%g — (p*/CT*X)aff.
In particular, we need to construct (functorial in U) morphisms
gry : holimy ey s K(Dy) — holimy rass K(Opxy).
If V is affine, then taking global sections induces a weak equivalence
K(Dv) — K(I'(V,Dy))
and similarly for K(7*V'). Furthermore, the natural morphism
K(I(T*V, Orsv) — K(I'(V, gr(Dy)))

is a weak equivalence. The latter is simply K(gr(T'(V, Dy ))). Therefore, it suffices to construct functorial
in V morphisms
K('(V,Dy)) — K(gr(L'(V, Dv))).
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In this situation, we have already constructed a morphism gr given by Theorem ?7. The functoriality
then follows from Proposition 3.2.3 g

Remark 3.3.4. Since Dy is positively filtered and X is smooth, we could also have used the morphism
gr@ from Corollary 3.2.5 instead in the proposition above. As a result, we can also construct a morphism
gr% : Kpy — psKrxx. However, by Proposition 3.2.6, this gr® is naturally homotopic to the one in the
theorem above.

Let Kg; denote the presheaf of spectra on T' *X¢ whose sections over an open conic V' are given by
K(E%|v). Similarly, let K+ x. denote the presheaf of spectra on T* X ° whose sections on an open conic
V are given by K(Orx xc|v).

Theorem 3.3.5. Let X be as above. Then there is a natural homotopy morphism of presheaves of spectra
on T*X¢

ar: ]Cgs{ e ]CT*XC~

In particular, for all open conics V. V', one has a commutative diagram:

K(E%|v) —2 K(T*X¢|y)

| |

K(E|v) —— K(T*X°|y).
The vertical morphisms are the natural restriction morphisms.

Proof. Suppose first that X is affine. For a conic open V < T*X¢, let V/f denote the set of D(f) c V
where f is homogeneous. If F is a presheaf of spectra on T* X ¢, then let F2// denote the presheaf whose
sections on an open conic V are given by holimy sy F(U). Now we have canonical morphisms Keg —
ICZ[ 7 and Kpsxe — IC;J;J;(C. Furthermore, K7 xc satisfies descent. It follows that the latter morphism

is a global weak equivalence and therefore we may canonically invert it as a homotopy morphism. In
particular, it suffices to construct a morphism of presheaves of spectra

aff aff
ng( - ’CT*XC'

For each U = V%// we have the following natural morphisms:
K(& o) = KT (U, E|v)) & K(gr(T(U, &) — K(T(U, Orxx)) — K(Orxx|v) = K(Orsx«|v).

Here gr is the morphism constructed in the previous section, and the first arrow is given by taking global
sections. Since U = D(f), for some homogeneous f, gr(I(U,E%|v)) = T'(U, Orsx). The arrow facing
left is given by taking global sections and, since U is affine, this morphism is a weak equivalence. In
particular, we can invert this morphism canonically as a homotopy morphism. The rightmost arrow
is given by push-forward along e. Note that this is exact since everything is affine. Taking homotopy
limit over U gives the desired morphism. Furthermore, it is clear that everything is compatible under
restriction.

If X is not affine, let X%/ denote the set of affine opens in X. Then one can construct the required
morphisms as follows. For each conic open U consider the following diagram:

Keg (U) — holimy ¢ xars Keg, (Ulv) — holimyc xars Krsve(Uly) < Kpsxe(U).

The first arrow is given by restriction, the second is the affine construction above, and the left facing
arrow is also given by restriction. Finally, again by descent, the left facing arrow is a weak equivalence.
O
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Corollary 3.3.6. One has a natural commutative diagram of pre-sheaves (on T*X€):

ar
Ing{ e ICT*XC

P, ]

K(Dx) —— K(T*X)
Here K(Dx) and K(T*X) are considered as constant presheaves.

Proof. First note that it is enough to construct the vertical map on global sections. In particular, we
need to construct morphisms

K(Dx) — K(€%)
and
K(T*X) —» K(T*X°).
Since the natural morphism p'~!Dx — £5 is flat, we may define
K(Dx) — K(£%)
by simply pulling back and extending of scalars. In the affine case, it is simply given by localization. The
morphism
K(T*X) —» K(T*X°)
is given by push-forward along e. Since gr is constructed by first passing to basic affines and global
sections on basic affines (for both Dx and £5), we can assume X is affine. We are reduced to showing
that the following diagram commutes, where D(f) is a basic affine associated to a homogeneous f in
T*X:
K(I(D(f), %)) — K(I(D(f), Or+x))

| T

KT(X,Dx)) —— KT(T*X, Or«x))

Since the vertical morphisms are given by localization and, hence flat, the commutativity is given by
Proposition 3.2.3. g

The natural morphism € 'Opsxe — Opsx is flat. In particular, the functor which sends a coherent
Orx xe-module M to the pull back €*M := Opxx ®ec—10,14 e M induces a morphism K(T*X¢) —
K(T*X). Furthermore, this is compatible under restriction to open conics. In particular, one has a
commutative diagram:

K(T*X°|y) —<— K(T*X|v)

| o]

€

K(T*X¢) ——— K(T*X)

where the vertical maps are induced by restriction. Furthermore, note that the following diagram

K(T*X¢) -~ K(T*X)
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commutative. To see this, note that for a coherent O« x-module M, the adjunction e*e, (M) — M is
an isomorphism.

Corollary 3.3.7. For every open conic V. T*X , there is a natural commutative diagram:

K(Es|v) —— K(V)

[, ]

K(Dx) —X K(T*X)
Proof. This is a direct consequence of the previous corollary and the previous remarks. ]

Let S <« T*X denote a closed conic with complement open conic V. In this situation, we can consider
the K-theory spectrum Kg(Ex«) of coherent modules M such that the pull back ¥ M has support in S.
One can similarly define the K-theory spectrum Kg(Dx).

Theorem 3.3.8. Let S and X be as above. Then there is a natural homotopy morphism:
85' : KS(gXﬂ) — Ks(T*X)

Proof. First note that, by the remarks above, we have a natural commutative diagram of fibrant-cofibrant
spectra:

e*ogr

K((‘:Xch/) —_— K(OT*X|V)

| ]

K(gxc) Em— K(OT*X)

T T

Ks(Exe) Ks(Or#x)
where V' is the open complement of S. Furthermore, the composition
Kg(Exe) = K(Exelv)
is canonically homotopic to zero. It follows that the composition
Ks(Exe) = K(Exe) = K(Opxx) = K(Ors x|y, )

is canonically homotopic to zero. Since the right vertical in the above commutative diagram is a homotopy
fibre sequence, it follows that one has a natural morphism:

Ks(Exe) = Ks(Orxx)
making the diagram commute. O

The push-forward e, induces a natural morphism
Ks(€x) — Ks(Exe).
Furthermore, pull back by p induces a natural morphism
Ks(Dx) — Ks(€x)
and pull back by p’ induces a natural morphism

Ks(Dx) —» Kg(Exe)
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Lemma 3.3.9. The following diagram is commutative:

Ks(Dx) —— Kg(Exe)

g
€%
Ks(Ex)
Proof. Let M be a coherent Dx-module with singular support in S. Then the morphism
Ks(Dx) — Kg(Exe)
is induced by sending M to Exc ®p-1p "1 M. The composition
Ks(Dx) —» Ks(€x) = Ks(Exe)
is induced by sending M to €4 (Ex ®,-1p p~tM). The result follows by noting that the adjunction
N — 6*671./\/
is an isomorphism for all N. O
As a result of the lemma and the previous theorem we have the natural homotopy morphisms:
&s 1 Ks(Dx) — Ks(T*X)

and
gs : Ks(gx) — Ks(T*X)
Furthermore, these fit into a commutative diagram:

Ks(Dx) —3 Kg(T*X)

e
Ks(Ex)

Theorem 3.3.10. Let S’ < S where S" and S are closed conic subsets. Then the following diagram is
naturally homotopically commutative:

Ks(Exe) —2 Kg(T*X)

T T

Egr
Kg (Exe) —— Ko (T*X)
One has a similar statement for the corresponding spectra of Dx-modules with supports.

Proof. This follows from the construction of g given in Theorem 3.22. The point is that the gr is natural
in conic opens V. O

3.4. Epsilon factors for Dx-modules and £x-modules. In this section, we show how to use the
results of the previous section to construct a theory of epsilon factors for complexes of Dx-modules (resp.
Ex-modules). Once we have microlocalization morphisms Eg as in the previous section, the construction
of epsilon factors follows the same basic recipe as in [12]. In the following, we shall always work with
the K-theory spectra of the Waldhausen category of bounded perfect complezes. For instance, K(Dx) will
denote the K-theory spectrum of perfect complexes of Dx-modules. Similarly, for K(£x), K(X), etc.
Since X is smooth, these are canonically weak equivalent to the corresponding Quillen K-theory spectra
of locally free or coherent modules. In particular, all the construction of the previous sections apply to
these spectra (by taking canonical inverses as homotopy morphisms).
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In the following, we fix a closed conic S € T*X. Let U — X denote an open subset, Y = X\U, and v be

a 1-form on U such that v(U) n S = . Furthermore, we shall assume that X is projective. By ([12],
Lemma 3.2.1), this gives rise to a commutative diagram:

o ]

K(T*X) " K(X

T

Kg(T*X) < K(Y)

K(V) —2 S K(U)
)

In particular, we have microlocalization morphisms:
Ks(Dx) 5 Ke(T*X) & K(Y).
Let £, s denote the composition. Similarly, we have a morphism
Ks(€x) = K(Y).

By abuse of notation, we shall also denote the latter morphism by &, s.

This gives rise to commutative diagrams:

K(Dyx) —— K(T*X) —— K(X

]

)
Ks(Dx) —— Ks(T*X) —— K(Y)

and
K(éx) —— K(T*X) —— K(X)

L1 ]

Ks(€x) — Kg(T*X) —— K(Y)
By ([12]), the composition

(r*)~t RD

K(Dx) —2 K(T*X)

K(X) K(k)

is homotopic to RT'4r : K(Dx) — K(k), where RT'4g is the Dx-module push-forward. A general six-
functor formalism in the setting of algebraic micro-differential operators has yet to be constructed in the
literature. However, we may define RI';p for a (complex of perfect) Ex-module M directly. Any such M
gives a homotopy points [M] of K(€x), and we may consider the corresponding the resulting homotopy
point of K(k) under the composition

(w*)*

K(Ex) —2 K(T*X) K(X) 25 K (k).

One can define this directly at the level of complexes via micro-localization. Specifically, let u(Ox) :=
Ex Qr-1(py) ™ 'Ox, and set RUgp(T*X, M) := RI(T*X, RHome, (u(Ox), M)) for a coherent Ex-
module M. Here, we consider Ox as a Dx-module in the usual way (i.e. we differentiate functions
in the usual way). In particular, it’s singular support is the zero section. It follows that the complex
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RHome, (1(Ox), M) is a complex of coherent sheaves supported on X. In particular, the resulting de-
Rham cohomology is finite dimensional (since X is proper).

A standard argument using the adjunction formula shows that if M comes from a coherent D x-module
(le. M = Ex ®r-—1(py) ™ 'N for a coherent Dy-module N), then this computes RT 4z(T*X, M) =
RT4r(X,N). This discussion holds verbatim in the setting of perfect complexes.

If M is a perfect complex of Dx-modules (resp. £x-modules) with singular support in S, then it gives
rise to a homotopy point [M] of Kg(Dx) (resp. Ks(Ex)). The above remarks now give the following:

Theorem 3.4.1. Let X, U c X, M, S c T*X and v be as above. Here we consider M in either setting
of Dx -modules or Ex-modules. Then

1: The homotopy points [RT gr(X, M)] and [RT(E,y (M))] are naturally identified. In particular,
passing to determinants gives a natural isomorphism (in Pic?(k)):

det(RT 4r(X, M)) — &, 5(M),

where g, g(M) := Det([RT'(E,,y (M))].

2: Suppose v = p on an open neighborhood U’ of Y. Then &,y (F) and £,y (F) are naturally
identified.

3: Let G, F € D%(Dx), and v be as above. Suppose F|y: = G|y for some open U' = X such that
Y cU'. Then &, y(F) and &,y (G) are naturally identified.

Remark 3.4.2. 1: If YV is the finite disjoint union of Y;, then K(Y) = [[K(Y;). In particular, one has
homotopy points &, y, (F) of K(Y;) and a canonical identification &,y (F) = >, &y, (F).
2: If & is a finite extension of k, then €,y (F) @k k' = €., v,, (Fir)-

The same method as in section 5 of ([12]) can be used to show that the previous theorem gives rise to
a theory of de Rham epsilon factors for curves (in the sense of [2]). We expect that all three theories of
epsilon factors for curves are naturally isomorphic. We refer to loc. cit. for details.

Furthermore, we expect that the microlocalization morphisms £g constructed here is naturally identified
with the construction of ([12]) via filtered Dx-modules. It is easy to see (although we do not give a proof
here), that the two microlocalization morphisms are the same at the level of homotopy groups.

Finally, note that the homotopy point &, s(M) only depends on the homotopy point [Ex ®-1p, T *M].
In particular, the local epsilon factor associated with a Dx-module M only depends on the microlocal
object gX ®7T—1(DX) 7T_1M.
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