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Abstract. In this note, we show the existence of motivic structures on certain objects
arising from the higher (rational) homotopy groups of non-nilpotent spaces. Examples
of such spaces include several families of hyperplane arrangements. In particular, we
construct an object in Nori’s category of motives whose realization is a certain completion
of πn(Pn \ {L1, . . . , Ln+2}) where the Li are hyperplanes in general position. Similar
results are shown to hold in Vovoedsky’s setting of mixed motives.
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1. Introduction

In his seminal paper on the fundamental group of P1 \ {0, 1,∞} ([4]), Deligne con-
structed a motivic structure on the Malcev Lie algebra and the Malcev completion of
π1(P1 \ {0, 1,∞}, x), where x is some fixed base point or, more generally, a tangential
base point. Furthermore, he showed that the corresponding motives give rise to exten-
sions of mixed Tate motives, and that their periods give rise to values of the Riemann
zeta function at positive integer values.

Since then several authors have studied the motivic nature of homotopy theoretic invari-
ants associated to algebraic varieties. In ([6]), Deligne and Goncharov recast Deligne’s
theory in Voevodsky’s triangulated category of motives. The resulting motives were used
to study the Tannakian fundamental group of various categories of mixed Tate motives
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over rings of integers of number fields ([5], [6]). For example, it was conjectured by Deligne
(and proved recently by Francis Brown [3]), that the category of mixed Tate motives over
Z (upto isogeny) is generated (in an appropriate Tannakian sense) by motives arising
from the fundamental group of P1 \ {0, 1,∞}. On the other hand, it is known that the
analogous result is false for the category of mixed Tate motives over rings of integers in
the cyclotomic extension given by N -th roots of unity (outside a finite set of values for N).
More precisely, the corresponding mixed Tate category is not generated by the motives
arising from the fundamental group of P1 \ {0, µN ,∞}, where µN is the set of N -th roots
of unity.

The main goal of this article is to generalize the constructions of mixed motives attached
to fundamental groups to higher homotopy groups. As a result, we shall obtain a whole
new class of examples of (extensions of) mixed Tate motives which one might use to under-
stand the structure of mixed Tate motives over arbitrary rings of integers. Note that the
existence of a motivic structure implies, in particular, that one has an associated Hodge
structure. In the setting of nilpotent spaces, such Hodge theoretic results were obtained
previously by Hain and Morgan. In ([8]), Hain constructed mixed Hodge structures on
the higher homotopy groups of nilpotent spaces.1 A similar result was proved by Morgan
([16]) in the case of smooth complex algebraic varieties.

Given a pointed complex algebraic variety (X, x), let g∗(X, x) denote the homotopy
(graded ) Lie algebra of X. In particular, gi(X, x) = πi+1(X, x) and the Lie product
is given by the Whitehead product. If (X, x) is a nilpotent space, then it follows from the
results of Hain ([8]) that the rational homotopy Lie algebra g∗(QX, x) has a mixed Hodge
structure. Here QX is the Q-completion of X (cf. section 2). For nilpotent spaces, one
has:

g∗(QX, x) =

{
Q-Malcev completion of π1(X, x) if ∗ = 0

π∗+1(X, x)⊗Q if ∗ > 0

Hain’s proof begins with the observation that the Chen-Sullivan de Rham theorem for
the fundamental group (and higher homotopy of nilpotent spaces) allows one to compute
the rational homotopy theory of nilpotent spaces through various differentially graded
algebras such as Sullivan’s minimal model or Chen’s complex of iterated integrals. Hain
shows that the corresponding complexes of iterated integrals have a natural structure of
a mixed Hodge complex and, therefore, gives rise to a mixed Hodge structure on the ra-
tional homotopy theory of complex algebraic varieties whose underlying complex analytic
space is a nilpotent space. A motivic version of this construction was given by K. Gartz
([7]). In particular, Gartz constructed a differentially graded Lie algebra (associated to
any pointed variety) in Nori’s abelian category of motives whose Hodge realization, in

1A pointed topological space is nilpotent if π1(X,x) is nilpotent, and acts nilpotently on all higher
homotopy groups.
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case of simply connected nilpotent spaces, gives Hain’s mixed Hodge structure on the
rational homotopy Lie algebra.

Unfortunately, from the point of view of constructing interesting extensions of mixed
Tate motives, there do not seem to be any interesting nilpotent spaces. However, there
are many interesting M -nilpotent spaces.2 Our primary example of an M -nilpotent space
is PM \ {L1, . . . , LM+2}, where the Li’s are hyperplanes in general position ([10]). In this
case, an easy application of the homotopy group version of the weak Lefschetz theorem
shows that πi(PM \ {L1, . . . , LM+2}) = 0 for all 1 < i < M and therefore trivially M -
nilpotent. More generally, results of Papadima and Suciu ([18]) show that the class of
hypersolvable arrangements gives rise to M -nilpotent spaces for some M depending on
the intersection lattice of the corresponding hyperplane arrangement. In this article, we
show that a certain completion of the M -th homotopy group of any M -nilpotent space
also has a motivic structure. This was suggested as a problem by Madhav Nori.

Our first main observation is that, for a M -nilpotent space, standard methods of ratio-
nal homotopy theory (Chen’s iterated integrals, Sullivan minimal models, and the Bar
construction) can be used to compute the nilpotent completion of the M -th homotopy
group. This result can be viewed as a direct generalization of the Chen-Sullivan π1-de
Rham theorem to the case of M -nilpotent spaces. The proof of this theorem is based on
the observation that, while traditionally rational homotopy theory deals only with the
class of nilpotent spaces, its methods and results extend to the slightly more general class
of M -nilpotent spaces. We believe that this result is of independent topological interest.

Theorem 1.1. Let X be a M-nilpotent space of finite Q-type. Then we have the following:

(1) π1(QX) is the Malcev completion of π1(X).

(2) There are natural isomorphisms

πk(QX)→ πk(X)⊗Q
for all 1 < k < M .

(3) There is a natural isomorphism

πM(QX)→ lim←−πM(X)IcπM(X)⊗Q.

In particular, one has isomorphisms

πM(QX)/IcπM(QX)→ πM(X)/IcπM(X)⊗Q.
Furthermore, πM(X)/IcπM(X)⊗Q is a finite dimensional vector space.

The results of Hain-Sullivan now give the following corollary, which is a direct generaliza-
tion of Deligne’s theorem on existence of a Hodge structure on the unipotent completion
of the fundamental group of the projective line minus three points.

2A space is M -nilpotent if π1(X,x) is nilpotent and acts nilpotently on πn(X) for all n < M .
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Corollary 1.2. Let X = PM \ {L1, . . . , LM+2} denote the complement of a generic hy-
perplane arrangement. Then the nilpotent completion

lim←−πM(X)IcπM(X)⊗Q

has a natural mixed Hodge structure.

In fact, the above corollary holds more generally for varieties whose associated complex
analytic spaces satisfy the conditions of the previous theorem. The second main result of
this article is a motivic generalization of the previous corollary.

Theorem 1.3. Let X = PM \ {L1, · · · , LM+2}. Then there is an object MM,k
(X,x) in Nori’s

category of motives whose Betti realization is πM(X, x)/IkπM(X, x)⊗Q.

In fact, we prove analogs of the previous theorem more generally for any M -nilpotent
variety. Furthermore, we construct motivic differentially graded algebras whose betti re-
alizations are appropriate nilpotent completions of the rational homotopy Lie algebra.
Note that πM(X, x)/IkπM(X, x)⊗Q is a module over Q[π1(X(C), x)]/Ik. We show more
generally that this module structure also lifts to the category of motives. We refer the
reader to section 4 for the precise statements. Finally, we also prove an analogous state-
ment in the Deligne-Goncharov category of integral mixed Tate motives.

Theorem 1.4. Let X = PMk \{L1, · · · , LM+2} where k is now a number field. Then there

is an object MM,k
(X,x) in the Deligne-Goncharov category of mixed Tate motives whose Betti

realization is πM(X, x)/IkπM(X, x) ⊗ Q.These motives can be lifted to motives over the
ring of integers localized away from points of bad reduction.

The objectsMM,k
(X,x) give rise to interesting extensions of mixed Tate motives. We believe

that these should give rise to interesting periods. For example, we hope that by taking dif-
ferent types of hyperplane arrangements one can realize special values of hypergeometric
functions as well as higher Aomoto logarithms as periods of these motives. Further-
more, these motives should lead to a better understanding of the category of mixed Tate
motives. We do not study any of these questions here, and plan to pursue them elsewhere.

We now give a brief outline of article. In the second section, we review some results
from rational homotopy theory, and, in particular, compute the homotopy groups of the
Q-completion of an M -nilpotent space. In the third section, we recall Gartz’s construc-
tion of various dga’s (differentially graded algebras) and dgla’s (differentially graded Lie
algebra’s) in a general Q-Karoubian category. In section 4 we construct motives in Nori’s
category arising form higher homotopy of M -nilpotent spaces. Finally, in the last section
we recast these results in the Deligne-Goncharov category of mixed Tate motives.

Acknowledgements It will be clear the debt this article owes to the ideas of Professor
Nori as well as K. Gartz. The author would like to thank Professor Nori for suggesting
the above problem and patiently explaining his ideas.
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2. Rational Homotopy Theory

The main goal of this section (cf. Theorem 2.10) is to compute the M -th homotopy group
of the Q-completion of M -nilpotent spaces. In the following, by a space we will mean a
pointed path-connected topological space. However, we will drop the base point from the
notation.We shall also assume that our spaces have the homotopy type of a CW complex.
In this article, we are only interested in algebraic varieties, and so these assumptions will
always be satisfied.

Remark 2.1. In the following, we shall refer to several results of ([1]) and ([2]). In loc.
cit., the authors work in the setting of simplicial sets. However, given a topological space
X, the singular chains give rise to a fibrant simplicial set Sing(X). On the other hand,
taking the geometric realization of a simplicial set gives a topological space. This gives
rise to a pair of adjoint functors between simplicial sets and topological spaces which
induce an equivalence on the corresponding homotopy categories. As a result, the results
in loc. cit. are also applicable to our setting. We refer the reader to ([2], Chapter 8) for
the details.

In ([2]), Bousfield–Kan (functorially) associate to X a tower of fibrations {QsX}. The
resulting inverse limit, denoted QX, is called the Q-completion of X. If X is a nilpotent
space, then πi(QX) = πi(X)⊗Q ([2], Chapter 5, Proposition 4.2).

Remark 2.2. ([1], pg. 51) A nilpotent Kan complex is of finite Q-type (i.e. has finite
dimensional rational homology) if and only if H1(X,Q) is finite dimensional and πn(X)⊗Q
is finite dimensional for all n ≥ 2.

The following lemma will be the main tool used to compute the homotopy groups of the
Q-completion in the case of M -nilpotent spaces.

Lemma 2.3. Let X be a space as above. Consider a commutative diagram:

X

��

Xoo

��

Xoo

��

· · ·oo

N1 N2
oo N3

oo · · ·oo

such that:

(1) Each Ni is a nilpotent space.
(2) The bottom row is a tower of fibrations.
(3) The natural morphism Hi(X,Q) → Hi(lim←−Nr,Q) is an isomorphism for all i ≤

M + 1 and a surjection for i = M + 2.

Then, then natural morphism QX → Qlim←−Nr induces an isomorphism πi(Q)→ πi(Qlim←−Nr)

for all i ≤M .
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Proof. Let N∞ := lim←−Nr. By ([2], Ch. 1, 6.2), under our hypothesis, one has πi(QX) ∼=
πi(QN∞) for all i ≤M . �

In order to apply the previous lemma, we shall now construct good towers, satisfying the
conditions of the previous lemma, for M -nilpotent spaces. We begin by recording the
following consequence of the Leray-Serre spectral sequence for future use.

Lemma 2.4. Let X → Y be a fibration with fiber given by a K(G, n) and I denote the
augmentation ideal of Z[π1(Y )]. Then there is a long exact sequence:

Hn+2(X)→ Hn+2(Y )→ H1(π1(Y ), G)→ Hn+1(X)→
Hn+1(X)→ G/IG→ Hn(X)→ Hn(Y )→ 0.

Proof. The proof is exactly the same as that of ([15], Lemma 8bis.23). �

Given a space X, let {X(k), pk} denote the Moore–Postnikov tower of X. In particular,
each pk : X(k) → X(k−1) is a fibration with fiber a K(πn, n + 1); furthermore, the maps
fk : X → X(k) induce isomorphisms on πi for all i ≤ k, πi(X

(k)) = 0 for all i > k, and
fk = pk ◦ fk+1.

Remark 2.5. Since the natural mapX → X(k) induces an isomorphism πi(X)→ πi(X
(k))

for all i ≤ k and a surjection for i = k + 1, it follows by the Whitehead theorem ([15],
Theorem 4.5) that the induced map Hi(X)→ Hi(X

(k)) is an isomorphism for all i ≤ k and
a surjection for i = k + 1. It follows, via an application of the universal coefficients exact
sequence, that Hi(X,Q) → Hi(X

(k),Q) is an isomorphism for all i ≤ k and a surjection
for i = k + 1.

A principal fibration p : E → B is a fibration which is the pull back of the path-loop
fibration of a space C with respect to a map θ : B → C. If X is simply connected,
then each pk is a principal fibration. In particular, one has mappings gk : X(k−1) →
K(πk(X), k+1) such that pk is the pullback of the canonical path fibration PK(πk(X), k+
1)→ K(πk(X), k + 1) along gk. The gk are referred to as the Postnikov invariants of the
Postnikov tower. A fibration pk : X(k) → X(k−1) is said to have a principal refinement if
it can be written as a sequence

X(k) = X(k,c)
p(k,c)−−−→ X(k,c−1) → · · · → X(k,1) = X(k−1)

where each p(k,r) is a principal fibration. One has the following standard result:

Theorem 2.6. ([15], Theorem 8bis.29) The following are equivalent:

(1) X is a nilpotent space.
(2) Every stage of the Postnikov tower of X admits a principal refinement.

One has an easy generalization of the previous result to the case of M -nilpotent spaces.
Recall that a space X is M-nilpotent if M ≥ 2, π1(X) is nilpotent and π1(X) acts
nilpotently on πi(X) for all i < M .

Proposition 2.7. The following are equivalent:
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(1) X is an M-nilpotent space.
(2) If k < M , then the k-th stage, pk, of the Postnikov tower of X admits a principal

refinement.

Furthermore, one can construct a commutative diagram of fibrations:

X(M)

��

X(M)

��

oo · · ·oo X(M)

��

oo · · ·oo

X(M−1) X(M,0)
=
oo X(M,1)oo · · ·oo X(M,c)oo · · ·oo

such that πi(X
(M,c)) = πi(X) for i < M and πM(X(M,c)) = πM(X)/IcπM(X), where

I ⊂ Z[π1(X)] is the augmentation ideal. Finally, if X is, in addition, of finite Q-type
then so are the X(k) for all k < M and X(M,c) for all c.

Proof. One proceeds as in the proof of the previous theorem ([15], Theorem 8bis.29). One
need only note that the theorem is proved separately at each stage of the Postnikov tower.
At the each stage of the Postnikov tower, one constructs inductively a tower {X(k,c)} such
that πi(X

(k,c)) = πi(X) for all i < k and πk(X
(k,c)) = πk(X)/Icπk(X). If k < M , then

the M -nilpotency hypothesis ensures that X(k,c) = X(k) for large enough c. At the M -th
stage, this gives an infinite tower with the required properties. It only remains to show the
last statement on finiteness. Therefore, suppose now that X is of finite Q-type. Note that
X(1) is a K(π1(X), 1) and the hypotheses on π1(X) and X ensure that this space is also of
finite Q-type. Now consider the fibration X(2,1) → X(1) with fiber K(π2(X)/Iπ2(X), 2).
An application of Lemma 2.4 to this fibration gives an exact sequence:

H3(X
(1))→ π2(X)/Iπ2(X)→ H2(X

(2,1))→ H2(X
(1))→ 0.

Since X is of Q-finite type, arguing as in Remark 2.5 shows that the H2(X
(2,c)) ⊗ Q is

finite dimensional. Furthermore, the right-most and left-most terms tensored with Q are
also finite dimensional since X(1) is of finite Q-type. It follows that π2(X)/Iπ2(X)⊗Q is
also finite dimensional. By Remark 2.2, it follows that X(2,1) is of finite Q-type. A similar
application of Lemma 2.4 to the fibration X(2) → X(2,c) gives an exact sequence:

H3(X
(2,1))→ Iπ2(X)/I2π2(X)→ H2(X

(2))→ H2(X
(2,1))→ 0.

Arguing as above, we conclude that Iπ2(X)/I2π2(X)⊗Q is finite dimensional, and there-
fore, π2(X)/I2π2(X) ⊗ Q is also finite dimensional. Therefore, by Remark 2.2, X(2,2) is
of finite Q-type. An inductive argument shows that X(2,c) is of finite Q type for all c. If
2 < M , then X(2,c) = X(2) for large enough c, and therefore X(2) if of finite Q-type. We
can now again argue as above to conclude that X(k) is of finite Q-type for all k < M and
X(M,c) is of finite Q-type for all c. �

Remark 2.8. The previous proposition shows that if X is a M -nilpotent space of finite
Q-type then, πM(X)/IcπM(X)⊗Q (c > 0) is a finite dimensional Q-vector space.
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Lemma 2.9. Suppose X is an M-nilpotent space of finite Q-type and X(N,c) is as in the
proposition. Then Hi(lim←−X

(M,c)) ∼= lim←−Hi(X
(M,c)) and πi(Qlim←−X

(M,c)) ∼= πi(lim←−QX
(M,c)).

Proof. Let X(M,∞) := lim←−X
(M,c). By ([2], Chapter 3, 3.4) and ([2], Chapter 3, 6.2), it is

enough to show that {X(M,∞)} → {X(M,c)} is a pro-weak homotopy equivalence (the left
term is considered as a constant tower). For this it suffices to show that the morphism
of towers of abelian groups {πk(X(M,∞))} → {πk(X(M,c))} is a pro-isomorphism The
standard exact sequence

0→ R1lim←−πk+1(X
(M,c))→ πk(X

(M,∞))→ lim←−πk(X
(M,c))→ 0

and the fact that all the transition maps in the inverse system {πk(X(M,c))} are sur-
jective, shows that πk(X

(M,∞)) → lim←−πk(X
(M,c)) is an isomorphism. For k 6= M , the

claim is clear. For k = M , we are reduced to showing that the morphism of towers
{lim←−πM(X(M))/IcπM(X(M))} → {πM(X(M))/Icπk(X

(M))} is a pro-isomorphism. The lat-

ter can be checked by hand. �

The main goal of this section is to prove the following theorem.

Theorem 2.10. Let X be a M-nilpotent space of finite Q-type. Then we have the follow-
ing:

(1) π1(QX) is the Malcev completion of π1(X).

(2) There are natural isomorphisms

πk(QX)→ πk(X)⊗Q
for all 1 < k < M .

(3) One has a natural isomorphism

πM(QX)→ lim←−(πM(X)/IcπM(X)⊗Q).

Proof. The first part of the proposition is true for any space X by ([2]). Since

πi(QX) = πi(QX(M−1))

for all 1 ≤ i < M and X(M−1) is a nilpotent space, the second part follows. By the
following lemma, one has an isomorphism

πM(QX)→ πM(lim←−QX
(M,c)).

Therefore, it suffices to compute the right hand side. One has an exact sequence:

0→ R1lim←−πM+1(QX(M,c))→ πM(lim←−QX
(M,c))→ lim←−πM(QX(M,c))→ 0.

Since X(M,c) is a nilpotent space, one has πi(QX(M,c)) = πi(X
(M,c)) ⊗ Q for all i > 1. It

follows that πM+1(QX(M,c)) = 0 and πM(QX(M,c)) = πM(X)/IcπM(X) ⊗ Q. The result
now follows from the exact sequence above. �

Therefore, the proof of the theorem is reduced to the following lemma.
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Lemma 2.11. Let X be a M-nilpotent space of finite Q-type. Then the natural morphism
QX → lim←−QX

(M,c) induces an isomorphism

πM(QX)→ πM(lim←−QX
(M,c)).

Proof. By ([2], Chapter 4, Proposition 5.1), πi(QX) = πi(QX(M)) for all k ≤ M . There-
fore, we can may replace X by X(M). By Lemma 2.3, Proposition 2.7, and Lemma 2.9 it
is enough to show that

Hi(X
(M),Q)→ Hi(lim←−X

(M,c),Q) = lim←−Hi(X
(M,c),Q)

is an isomorphism for all i ≤ M + 1 and surjective for M + 2. An application of Lemma
2.4 to the fibration X(M) → X(M,c) gives an exact sequence

HM+2(X
(M))→ HM+2(X

(M,c))→ H1(π1(X), IcπM(X))→ HM+1(X
(M))→

HM+1(X
(M,c))→ IcπM(X)/Ic+1πM(X)→ HM(X(M))→ HM(X(M,c))→ 0.

Since X(M,c) is of finite Q-type, tensoring this exact sequence with Q, and taking the
inverse limit over c gives the desired result.

�

3. Differentially graded Lie algebras

In this section, we recall a construction due to K. Gartz of a differentially graded (Lie)
algebra in a Q-Karoubian symmetric monoidal category. We begin by recalling the basic
construction of Gartz ([7]). Then we recall a theorem of Gartz relating this construction,
in the case of certain differentially graded algebras, to the indecomposables in the Bar
construction.

In the following, C will denote a symmetric monoidal category. We shall let ⊗ denote the
monoidal structure in C. Let Fin denote the category of finite sets, where morphisms
are all set maps. We will view Fin as a symmetric monoidal category with monoidal
structure given by the disjoint union. We will denote by [n] the object {1, . . . , n} of Fin.3

Suppose we have a functor F : Finop → C and a natural transformation

N : ⊗ ◦ (F × F )→ F ◦
∐

.

Furthermore, suppose that F and N satisfy the following properties:

(F1) If S = ∅, then F (S) = 1C.
(F2) For all S ∈ Fin,

F (∅)⊗ F (S)→ F (S) and F (S)⊗ F (∅)→ F (S)

are isomorphisms.

3While this is contrary to standard notation, it is consistent with that of ([7]).
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(F3) The following diagram commutes:

F (S)⊗ F (T )
N(S,T )

//

��

F (S
∐
T )

��
F (T )⊗ F (S)

N(T,S)
// F (T

∐
S)

(F4) The following diagram commutes:

(F (R)⊗ F (S))⊗ F (T ) //

��

F (R
∐
S)⊗ F (T )

))
F (R

∐
S
∐
T )

F (R)⊗ (F (S)⊗ F (T )) // F (R)⊗ F (S
∐
T )

55

Given a category A, let Z[A] denote the category with the same objects as A and mor-
phisms given by HomZ[A](X, Y ) := Z[HomA(X, Y )]. Since C is an additive category, any
functor F : A → C extends to an additive functor F : Z[A] → C. This applies to Finop

and F above.

Let Z[Σn] denote the group ring over the symmetric group. Then one has an inclusion
(induced by the left action of Σn on [n]) Z[Σn] ↪→ HomZ[Fin]([n], [n]). Consider the
following elements in Z[σn]: sn := (1−σ(1,2)) · · · (1−σ(12...n)) and wn := (1+σ(12)) · · · (1+
(−1)nσ(12···n)). By ([7], Proposition 2.2), one has s2n = nsn and w2

n = nwn. In the following,
we will need to consider images under various morphisms in C induced via sn and wn. We
recall the following definition.

Definition 3.1. An additive category A is Q-Karoubian if for any morphism
f ∈ HomA(X,X) such that f ◦ f = nf for some integer n, the image of f exists in A.

Remark 3.2. A Q-linear Karoubian complete category is Q-Karoubian. Given an endo-
morphism f such that f ◦ f = nf , f/n is an idempotent and therefore has an image. It
follows that f has an image.

From now on we shall assume that C is Q-Karoubian. In the following, we shall denote
F ([n]) simply by F (n). For each i ∈ {1, · · · , n+1}, let δi ∈ HomFin([n+1], [n]) denote the
morphism given by δi(j) = j− 1 if i < j and δi(j) = j if i ≥ j. Then fn =

∑n
i=1(−1)i−1δi

satisfies the relation fn ◦fn+1 = 0 when considered as an element of Z[Fin]. In particular,
this gives rise to a complex

F (1)→ F (2)→ · · ·
in C (here F (i) is in degree i). On the other hand, RF = ⊕F (n) is an associative graded
algebra with the algebra structure coming from the monoidal structure. Furthermore,
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the differential from the complex induces a differential on RF . We can also define the
truncated associative algebra RN

F = ⊕N1 F (n) with a differential. Let PF = ⊕F (n)F (wn)
and its truncation PNF = ⊕N1 F (n)F (wn). Then the main result of ([7]) states the following:

Theorem 3.3. (K. Gartz, [7])

(1) RF and RN
F are differentially graded algebras with differential and algebra structure

given above. In particular, they acquire the structure of differentially graded Lie
algebras.

(2) Both PF and PNF are differentially graded Lie subalgebras of RF and RN
F (respec-

tively).

Note that RN
F is naturally a quotient of RF . In particular, one has a natural inverse

system of differentially graded algebras:

R1
F ← R2

F ← · · ·

Similar remarks also apply to PNF . We list some examples of functors F and categories C
to which one can apply the previous theorem, and will be useful in the following.

Example 3.4. Let PV ark denote the category of pairs of varieties over k. Let Q[PV ark]
denote the corresponding Q-linear category and Q[PV ark]

κ its Karoubian completion.
By Remark 3.2, the latter category is Q-Karoubian. Given a pointed variety (X, x), we
can define a functor F (X, x) : Finop → Q[PV ark]

κ which sends [n] to the pair (Xn, x ×
Xn−1 ∪ . . . ∪Xn−1 × x).

Example 3.5. If k ⊂ C, then we have a natural functor

Q[PV ark]→ Ch(V ectQ)

given by sending a pair to the corresponding relative singular chain complex tensored with
Q. By composing with F (X, x), this gives rise to a functor S(X, x) : Finop → Ch(V ectQ)
and therefore differentially graded Lie algebras PNS (X, x) in Ch(V ectQ). We can think
of the latter as a double complex, and denote by Tot(PNS (X, x)) the corresponding total
complex.

We conclude this section by recalling a result of Gartz which, in the setting of the previous
example, relates Tot(PNS (X, x)) to the indecomposables in the Bar construction on the
Sullivan polynomial de Rham complex of X. We begin by recalling the Bar construction.

Let A denote a commutative differentially graded algebra over a field k of characteristic
0. We will assume that A comes equipped with an augmentation denoted ν : A→ k. We
will also assume A is positively graded and that A0 = k. The augmentation ideal IA is
the kernel of the augmentation map. Then one can construct a (second quadrant) double
complex B−s,t = [⊗sIA]t. The element a1 ⊗ a2 ⊗ · · · ⊗ as of B−s,t is usually denoted by
[a1| · · · |as]. This double complex comes equipped with two differentials, an internal one
and an external one. Given a graded vector space V , let J : V → V denote the involution



12 DEEPAM PATEL

Jv = (−1)deg(v)v. Then the internal differential dI : B−s,t → B−s,t+1 is given by the
formula:

dI([a1| · · · |as]) =
∑s

i=1(−1)i[Ja1| · · · |Jai−1|dai|ai+1| · · · |as]

The exterior differential dE : B−s,t → B−s+1,t is given by the formula:

dE([a1| · · · |as] =
∑s−1

i=1 (−1)i+1[Ja1| · · · |Jai−1|Jai · · · ai+1| · · · |as]

One has d2I = d2E = 0 and dIdE + dEdI = 0. The Bar construction on A is the total
complex B(A) associated to this double complex with differential dI + dE. Then B(A)
has a dg coalgebra structure given by the tensor product and an algebra structure coming
from the shuffle product. In particular, B(A) is a differentially graded Hopf algebra.
Furthermore, B(A) comes equipped with the Bar filtration:

B(A) ⊇ · · · ⊇ B−1 ⊇ B0 = k,

where B−s = ⊕u≤sB−u,t.

Given a cdga A, the homology of the Bar construction H(B(A)) also has a Hopf algebra
structure. Furthermore, the filtration B−s induces a filtration:

0 ⊂ k ⊆ B0 ⊆ B1 ⊆ · · · ⊆ H(B(A))

Since B(A) is an augmented dg Hopf algebra, we can define the Lie coalgebra of inde-
composables in the following way. Let J denote the augmentation ideal of B(A). Then
the indecomposables QB(A) are defined to be the cokernel of the multiplication map

J ⊗ J → J.

We also define QB−N to be the cokernel of the multiplication

B−N ⊗B−N → B−N .

One has an induced filtration: 0 ⊂ k ⊆ QB0 ⊆ QB1 ⊆ · · · ⊆ QH(B(A)).4

Before stating Gartz’s result, we recall some preliminaries on the Sullivan polynomial
forms. Given a topological space X, Sullivan ([19]) constructed a complex of rational
polynomial forms APL(X). This gives a contravariant functor from topological spaces to
the category of positively graded commutative dg Q-algebras. In particular, a choice of a
point x ∈ X gives rise to an augmentation of cdga’s:

APL(X)→ APL(x) = Q.
In this case, one has the following theorem due to K. Gartz ([7]):

4One has QB−N = ⊕−s>−NQBar
−s(A).
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Theorem 3.6. (K. Gartz, [7]) The integration pairing induces a natural morphism of dg
Lie coalgebras

QB−N(APL(X))→ (Tot(PNS (X, x)))∨

such that the induced map

H∗(QB−N(APL(X)))→ H∗((Tot(PNS (X, x)))∨)

is an isomorphism of Lie coalgebras.

4. Motivic structures on homotopy groups

4.1. Nori’s category of motives. In this section, we recall some basic facts about Nori’s
category of motives ([17], [12], [14]). In the following, k ⊂ C will be a field of character-
istic zero.5 Nori has defined two categories of (effective) mixed motives, homological and
cohomological, over a field of characteristics zero. In the following, we shall mostly work
with the homological version.

In ([17]), Nori constructs an abelian category EHM(k) of effective homological motives.
One can localize this category at the Tate object to get an abelian category of mixed
motives M(k). These categories satisfy the following properties:

(1) There is a faithful exact functor ff :M(k)→ Z−mod. We shall refer to this as
the ‘realization functor’.

(2) For all pairs of varieties (X, Y ), where Y is a closed subvariety of X, and non-
negative q, there is an object Hq(X, Y ) in M(k).

(3) ff(Hq(X, Y )) = Hq(X(C), Y (C);Z).
(4) There is a tensor functor ⊗ :M(k) ×M(k) →M(k) giving M(k) the structure

of a symmetric monodical category. The identity is given by H0(Spec(k), ∅).
(5) There is a functor C∗ : Affk → Ch(Ind(M(k))) such that Hq(ff(C∗(X))) =

Hq(X(C)). A closed imbedding Y ⊂ X gives a monomorphism C∗(Y ) → C∗(X).
We denote the quotient by C∗(X, Y ).

(6) The tensor structure on M(k) extends to give one on Ch(Ind(M(k)). Further-
more, one has a natural quasi-isomorphism:

C∗(X)⊗ C∗(Y )→ C∗(X ⊗ Y ).

This gives rise to a Σn-equivariant map

C∗(X)⊗n → C∗(X
n).

Remark 4.1. We may replace M(k) with EHM(k) in the above statements. There is
an analogous category ECM(k) of effective cohomological motives. Then one has analogs
of the previous properties, where the realization functors will now compute cohomol-
ogy. Furthermore, taking duals gives rise to natural duality (contravariant) functors
EHM(k)→ ECM(k).

5In the following, we fix such an embedding. However, the construction of Nori’s category of motives
does not depend on the choice of embedding.
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Given a pointed algebraic variety (X, x) over k, let Fmot(X, x) : Finop → Ch(Ind(EHM(k)))
denote the following functor:

[n]→ C∗(X
n, x×Xn−1 ∪ . . . ∪Xn−1 × x).

Composing with the realization functor and tensoring with Q, gives

ff(Fmot(X, x)) : Finop → Ch(V ect(Q)).

Since EHM(k) is an abelian category satisfying the ascending chain condition, it follows
that Ind(EHM(k)) is also an abelian category. Therefore, Ch(Ind(EHM(k))) is an abelian
category and, in particular, Q-Karoubian. Therefore, we may apply the constructions of
section 3 to get differentially graded Lie algebras

PNFmot(X,x) and PNff(Fmot(X,x)).

In the following, we shall drop the pointed variety (X, x) from our notation and write
simply PNFmot

etc. One has an identification ff(PNFmot
)⊗Q = PNff(Fmot)

. Furthermore, by

the results of Gartz ([7], pg. 20), one has a natural isomorphism of Lie algebras:

H∗(Tot(PNff(Fmot)))→ H∗(Tot(PNS )).

Note that one has ff(H∗(Tot(PNFmot
))) = H∗(Tot(ff(PNFmot

))).

Remark 4.2. Note that, since ff(H∗(Tot(PNFmot
))) in finite dimensional, one has

H∗(Tot((PNFmot
))) ∈ EHM(k).

Remark 4.3. Let EHM(k)Q denote the category of effective homological motives tensored
with Q. Then ff extends to a faithful exact functor ff : EHM(k)Q → Ch(V ect(Q)). If
M ∈ EHM(k) then we let MQ denote its image in EHM(k)Q. Note, ff(MQ) = ff(M)⊗Q.

4.2. Motivic structure on higher homotopy of the nilpotent spaces. Let (X, x)
be a pointed variety over k ⊂ C. Associated to each such pointed variety, one has the
differentially graded Lie algebras PNFmot

in Ch(Ind(EHM(k))). We begin by computing the
homology of the Betti realization of this dgla. At the level of Betti realizations (tensored
with Q) we have an inverse system of dgla’s

· · · → PNS → PN−1S → · · · → P1
S.

This gives a direct system of (graded) Lie coalgebras:

· · · ← H∗((Tot(PNS ))∨)← H∗((Tot(PN−1S ))∨)← · · · → H∗((Tot(P1
S))∨).

By Theorem 3.6 this direct system is isomorphic to the direct systems of Lie coalgebras:

· · ·H∗(QB−(N)(APL(X)))← H∗(QB−(N−1)(APL(X)))← · · · ← H∗(QB−1(APL(X))).

In particular, we have an isomorphism of graded Lie coalgebras

lim−→H∗(QB−N(APL(X)))→ lim−→H∗((Tot(PNS ))∨).
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Since direct limits commute with cohomology, the left side can de identified with
H∗(QB(APL(X))).

The following theorem relates H∗(QB(APL(X))) with the homotopy Lie algebra. In the
following, for a pointed space (X, x), let g∗(X) denote the corresponding homotopy Lie
algebra. The proof of the following theorem is the same as ([10], Theorem 2.6.2).

Theorem 4.4. Suppose (X, x) is a pointed algebraic variety, and QX(C) is the Q-
completion of the topological space X(C).

(1) There is a natural isomorphism of Lie coalgebras:

HomQ(lim−→H∗(Tot(PNff(Fmot))
∨,Q) = g∗(QX(C)).

(2) One has canonical isomorphisms:

H0(Tot(RN
FS

)∨)→ H0(Bar−N(APL(X)))→ Hom(Q[π1(X, x)]/IN+1,Q)

Proof. First, it is enough to prove the statement with PNff(Fmot)
replaced by PNS . There-

fore, by the remarks above, we may replace lim−→H∗(Tot(PNff(Fmot
)∨) by H∗(QB(APL(X)).

Since the natural morphism from a minimal model M(X) → APL(X) induces a quasi-
isomorphism of Bar complexes, the corresponding map H∗(QB(M(X)))→ H∗(QB(A(X)))
is an isomorphism of Lie coalgebras. By a result of Hain ([9]), the natural map
QH∗(B(M(X)) → H∗(QB(M(X)) is an isomorphism of Lie coalgebras. By a theorem
of Chen, the former is isomorphic to QM(X)[1] as a Lie coalgebra. By ([1], 12.8), the
induced map

g∗(QX)→ Hom(QM(X)[1],Q))

is an isomorphism. For the second statement, by the proof of ([7], Lemma 5.4), the first
arrow is an isomorphism. The second arrow is an isomorphism by the Chen-Sullivan de
Rham theorem ([10], 2.4.3). �

In the following, g≤k∗ (X, x) will denote the truncated homotopy Lie algebra of X. In
particular, it is the same as g∗(X) in degree ≤ k and 0 otherwise. The following corollary
was obtained by Gartz ([7]) in the case of simply connected spaces.

Corollary 4.5. Let (X, x) be a pointed variety over k ⊂ C such that X(C) is a nilpotent

space. Then, for each k > 1, we can associate to (X, x) graded Lie algebras Mk,∗
(X,x) in

EHM(k)Q such that the betti realization of Mk,∗
(X,x) is the Lie algebra g≤k∗ (QX(C)).

Proof. Consider the direct system of graded Lie coalgebras

H≤k((Tot(PNFmot
))∨)Q := ⊕i=ki=0Hi((Tot(PNFmot

))∨)Q.

By Lemma 4.6, we can replace this inverse system by an inverse system of graded Lie
coalgebras MN,k,∗

(X,x) with injective transition maps such that the resulting direct system

has the same direct limit. The realizations of the MN,k,∗
(X,x) form a direct system with

injective transition maps and the corresponding direct limit computes (g≤k∗ (QX(C)))∨.
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Since the latter is finite dimensional, the induced map ff(MN,k,∗
(X,x) ) → (g≤k∗ (QX(C)))∨ is

an isomorphism for N large enough. Taking Mk,∗
X,x to be dual of MN,k,∗

X,x for large enough
N gives the desired Lie algebra. �

We now describe an explicit recipe for replacing the inverse system H≤k((Tot(PNFmot
))∨)Q

by a direct system of graded Lie coalgebras with inejctive transition maps.

Lemma 4.6. The direct system of graded Lie coalgebras H≤k((Tot(PNFmot
))∨)Q can be

replaced by an direct system of graded Lie coalgebras MN,k,∗
(X,x) with injective transition maps

such that the resulting direct system has the same direct limit.

Proof. Recall, we have a surjective morphism of dg Lie algebras PNFmot
→ PN−1Fmot

in
Ch(Ind(EHM(k))). Taking duals (and passing to ECM(k)) gives an injective morphism
of dg Lie coalgebras (PN−1Fmot

)∨ → (PNFmot
)∨. We can view this as an inclusion of double

complexes. Let KN denote the corresponding cokernel. Taking total complexes gives an
exact sequence of complexes:

0→ Tot((PN−1Fmot
)∨)→ Tot((PNFmot

)∨)→ Tot(KN)→ 0.

This gives a long exact sequence in ECM(k)Q

· · · → Hi−1(Tot(KN))Q → Hi(Tot((PN−1Fmot
)∨))Q → Hi(Tot((PNFmot

)∨))Q → · · ·

Let MN−1,i
(X,x) denote the quotient of Hi(Tot((PN−1Fmot

)∨))Q by the image of Hi−1(Tot(KN))Q.

Then each MN,∗
(X,x) is a graded lie coalgebra in ECM(k)Q and it’s dual is a lie algebra in

EHM(k)Q. By construction, the natural maps

MN,∗
(X,x) →MN+1,∗

(X,x)

are inclusions. Furthermore, there is a natural isomorphism of Lie coalgebras:

lim−→H∗((Tot(PNFmot
)∨))Q → lim−→M

N,∗
(X,x).

Since the realization functor is faithful exact, one can check these statements after taking
realizations.

�

Note that if the natural maps

Hi(Tot((PN−1Fmot
)∨))→ Hi(Tot((PNFmot

)∨))

were inclusions, then by simply taking N large enough we see that H∗(Tot((PNFmot
)) will

give the desired Lie algebra. For example, ifX is simply connected, then Hi−1(Tot(KN)) =
0 for N large relative to i. To see this, note that Hi−1(Tot(KN)) is a direct summand
of HN+i−1(XN), where XN denotes the smash product. An application of the Kunneth
formula now forces this to be zero if N is larger than i− 1. This follows simply because,
in this case, there must be an H1 in each factor of the Kunneth decomposition.
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4.3. The case of M-nilpotent spaces. In the following, let RN denote the motive in
EHM(k)Q given by H0(Tot(RN

Fmot
))Q. Recall, its realization is given by Q[π1(X, x)]/IN+1.

Our main goal in this section is to prove the following theorem.

Theorem 4.7. Let (X, x) be a pointed variety such X(C) is M-nilpotent.

(1) Then there is a Lie algebra in EHM(k) whose realization is the truncated homotopy
lie algebra g<M(QX(C)).

(2) There is an inverse system of objects MM,q
(X,x) in EHM(k) whose realization is

(πM(X(C))/Iq)⊗Q. Furthermore, MM,q
(X,x) is a module object over the ring object

Rq−1
(X,x).

Proof. In degrees less than M , the homotopy Lie algebra g<M(QX(C)) is just the usual
homotopy Lie algebra ofX tensored with Q and these are all finite dimensional. Therefore,
part one can be proved just as the case of nilpotent spaces above.
For the second part, first recall that the natural morphism RN

F → PNF combined with the
Lie algebra structure of PF induces morphisms:

RN ⊗ H−i(Tot(PNFmot
))→ H−i(Tot(PNFmot

)).

Furthermore, this action induces a morphism:

RN ⊗Mi,N
(X,x) →M

i,N
(X,x),

where MN,i
(X,x) is the dual of MN,i (see proof of Lemma 4.6). If q ≥ 2 is fixed, then for all

N ≥ q we have surjections:

RN → Rq−1.

Let RN,q−1 denote the kernel of this morphism. Then we have an exact sequence in
EHM(k)

0→ RN,q−1 → RN → Rq−1 → 0

whose realization is

0→ Iq/IN+1 → Q[π1(X, x)]/IN+1 → Q[π1(X, x)]/Iq → 0.

In the following we fix a q ≥ 2. Then for each N > q − 1, let Mi,N,q
(X,x) denote the quotient

of Mi,N
(X,x) by the image of RN,q−1

(X,x) × Mi,N . For N < q, let Mi,N,q
(X,x) = Mi,N

(X,x). Then

the Mi,N,q
(X,x) form an inverse system with surjective transition maps. Furthermore, by

the previous remarks and Lemma 4.6, one has a canonical isomorphism at the level of
realizations:

(lim−→(ff(MM,N,q
(X,x) )∨)∨ → πM(QX(C))/IqπM(X(C)).

Since the right side is finite dimensional, we can argue as before to conclude that
ff(MM,N,q

(X,x) )→ πM(QX(C))/IqπM(X(C)) is an isomorphism for large enough N . �
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4.4. The case of hyperplane arrangements. Let Y = AM and A denote a set of
hyperplanes in Y . Following Hattori ([10]), we say that A is generic if for all B ⊂ A the
intersection ∩H∈BH has codimension |B| when |B| ≤ M and is empty when |B| > M . In
this setting, the higher homotopy groups of X(A) = CM \ A were computed by Hattori.

Theorem 4.8. (Hattori) Let A denote a generic hyperplane arrangement in CM such
that |A| = n > M > 1. Then

(1) π1(X(A)) = Zn
(2) πk(X(A)) = 0 for all 1 < k < M .
(3) πM(X(A)) has a free Z[π1] resolution of length n−M .

Let X = PM \ {L1, . . . , LM+2} denote the complement of M + 2 hyperplanes in general
position (generic in the above sense). Then we can apply Hattori’s theorem to X(C) and
conclude that

(1) π1(X(C)) = ZM+1

(2) πk(X(C)) = 0 for all 1 < k < M .
(3) πN(X(C)) is a free Z[ZM ]-module of rank 1.

In particular, X(C) is an M -nilpotent space. Therefore, the results of the previous sub-
section give the following theorem.

Theorem 4.9. Let X = PM \ {L1, · · · , LM+2} and x ∈ X a k-rational point. Then there

is an object Mk,M
(X,x) in Nori’s category of motives whose Betti realization is

(πM(X, x)/IkπM(X, x)) ⊗ Q. Furthermore, Mk,M
(X,x) is a module object over Rk−1

(X,x) in the

category of mixed Tate motives. Recall, Rk−1
(X,x) has betti realization given by Q[π1(X, x)]/Ik.

One can also apply the results of the previous section to more general hyperplane ar-
rangements. In particular, it follows from the results of Papadima and Suciu ([18]) that
the class of hypersolvable (see loc. cit.) hyperplane arrangements also give rise to M -
nilpotent spaces. Note that in general the first non-vanishing higher homotopy group may
not be M (the dimension of the corresponding affine space) but will instead be given by
the combinatorics of the intersection lattice.

5. Voevodsky’s category

In this section, we render the results of the previous section to Voevodsky’s category of
motives. We begin by recalling some notation and facts regarding Voevodsky’s category
of motives. We refer to ([20]) for the details.

Let DMgm(k) denote Voevodsky’s category of geometric motives and DM eff
gm (k) the corre-

sponding category of effective motives. Let DMgm(k)Q denote the Karoubian completion
of DMgm(k)⊗Q. Since this is a Q-linear Karoubi complete category, it is automatically
Q-Karoubian.
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The category DMgm(k) comes equipped with a betti realization functor RB : DMgm(k)→
D, where D denotes the bounded derived category of Q-vector spaces ([13], [11]). There
is also a natural functor from V ark → DMgm(k) which extends to a functor Cb(V ark)→
DMgm(k). We assume here that an imbedding k → C has been fixed.

We briefly recall the strategy of Huber’s ([13], [11]) construction of RB. First, note that
one has a natural functor, Cb(V ark)→ CoCh(V ect(Q)), which sends a variety X to the
dual of the corresponding singular chain complex of X(C) tensored with Q and a complex
of varieties to the corresponding total complex. Note that RB is a contravariant functor.
Huber ([13], [11]) shows that this functor gives rise to a commutative diagram:

Cb(Z[V ark]) //

��

CoCh(V ect(Q))

��
DMgm(k) // D(V ect(Q))

Note that the right hand column is Q-Karoubian, and so one has an induced diagram:

Cb(Q[V ark]
κ) //

��

CoCh(V ect(Q))

��
DMgm(k)Q // D(V ect(Q))

Now there is a natural map Q[PV ark]
κ → Cb(Q[V ark]

κ), it sends a pair (X, Y ) to the
complex [Y → X]. Given any pointed variety (X, x), we have the functor F (X, x) :
Finop → Q[PV ark]

κ which, after composing with the previous functor gives rise to a
functor F ′(X, x) : Finop → Cb(Q[V ark]

κ). This gives rise to a differentially graded
Lie algebra PNF ′ in Cb(Q[V ark]

κ). Taking the associated total complex gives rise to a
differentially graded Lie algebra PNmot in Q[V ark]

κ. We can this of this object as complex,
and, in particular, as an element of Cb(Q[V ark]

κ). Let Pnv denote its image DMgm(k)Q.

Theorem 5.1. Let (X, x) be a pointed algebraic variety. Then one has an isomorphism:

HomQ(lim−→H∗(RB(PNv )),Q) ∼= g∗(QX(C)).

Proof. This follows from the fact thatRB(Pnv ) is quasi-isomorphic to the complex (Tot(PNS ))∨

and Theorem 4.4. �

It is not known if Voevodsky’s category has a good t-structure. In particular, one does
not know how to take homology of the total complex given by Pnv . On the other hand, if k
is a number field (which we shall assume from now on), then it is known that triangulated
category of mixed Tate motives, DMT (k)Q ⊂ DMgm(k)Q has a good t-structure ([6]). In
particular, one has the corresponding abelian category of mixed Tate motives MT (k)Q.
Furthermore, if the motive of X is mixed Tate (i.e. lies in DMT (k)Q), then so will PNv . We
assume from now on that the motive of X is mixed Tate. Note that the realization functor
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restricts to a realization functor on DMT (k)Q. Furthermore, this functor is t-exact ([21],
pg. 20). Therefore, by t-exactness and contravariance of RB,

RB(H−∗(PN)) ∼= H∗(Tot(PNS )),

where H∗(PN) is cohomology with respect to the t-structure. The previous discussion can
also be applied to R, and therefore one has an object H0(RN

v ) in MT (k)Q. Furthermore,
one has a natural action map as before:

H0(RN
v )⊗ Hi(PNv )→ Hi(PNv ).

Theorem 5.2. Let (X, x) be a pointed algebraic variety such that X(C) is M-nilpotent
and the motive of X is mixed Tate. Then there are are objects M (M,k) ∈ MT (k)Q for all
i ≤M such that the Betti realization of MM,k is πM(X)/IkπM(X)⊗Q.

Proof. Given previous remarks, and the fact that MT (k)Q is a Tannakian category, we
can repeat the proof of Theorem 4.7. �

The motives arising from complements of hyperplane arrangements are all mixed Tate.
Therefore, generic hyperplane arrangements, in the sense of Hattori, give rise to varieties
satisfying the hypotheses of the theorem.

Remark 5.3. By the results of ([6]), the motives from Theorem 5.2 will lift to the category
of mixed Tated motives MT (Ok,S)Q over the the ring of S-integers in k whenever the
motive of (X, x) has good reduction over Ok,S.
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