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Abstract. Let k ⊆ C be an algebraically closed subfield, and X a variety

defined over k. One version of the Beilinson-Hodge conjecture that seems
to survive scrutiny is the statement that the Betti cycle class map clr,m :

H2r−m
M (k(X),Q(r)) → homMHS

(
Q(0), H2r−m(k(X)(C),Q(r))

)
is surjective,

that being equivalent to the Hodge conjecture in the case m = 0. Now consider

a smooth and proper map ρ : X→ S of smooth quasi-projective varieties over

k, and where η is the generic point of S. We anticipate that the corresponding
cycle class map is surjective, and provide some evidence in support of this in

the case where X = S ×X is a product and m = 1.

1. Introduction

The results of this paper are aimed at providing some evidence in support of
an affirmative answer to a question first formulated in [SJK-L, Question 1.1], now
upgraded to the following:

Conjecture 1.1. Let ρ : X→ S be a smooth proper map of smooth quasi-projective
varieties over a subfield k = k ⊆ C, with η = ηS the generic point of S/k. Further,
let r,m ≥ 0 be integers. Then

clr,m : CHr(Xη,m;Q) = H2r−m
M (Xη,Q(r))→ homMHS

(
Q(0), H2r−m(Xη(C),Q(r))

)
,

is surjective.

Here
H2r−m(Xη(C),Q(r)) := lim

→
U⊂S/k

H2r−m(ρ−1(U)(C),Q(r)),

is a limit of mixed Hodge structures (MHS), for which one should not expect finite
dimensionality, and for any smooth quasi-projective variety W/k, we identify mo-
tivic cohomologyH2r−m

M (W,Q(r)) with Bloch’s higher Chow group CHr(W,m;Q) :=
CHr(W,m)⊗Q (see [Bl1]). Note that if S = Spec(k), and m = 0, then X = Xk is
smooth, projective over k. Thus in this case Conjecture 1.1 reduces to the (classical)
Hodge conjecture. The motivation for this conjecture stems from the following:

Firstly, it is a generalization of a similar conjecture in [dJ-L, (§1, statement (S3)],
where X = S, based on a generalization of the Hodge conjecture (classical form) to
the higher K-groups, and inspired in part by Beilinson’s work in this direction.
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In passing, we hope to instill in the reader that any attempt to deduce Conjec-
ture 1.1 from [dJ-L, §1, statement (S3)] seems to be hopelessly naive, and would
require some new technology. To move ahead with this, we eventually work in the
special situation where X = S × X is a product, with S = S and X smooth pro-
jective, m = 1, and employ some motivic input, based on reasonable pre-existing
conjectures.

Secondly, as a formal application of M. Saito’s theory of mixed Hodge modules
(see [A], [K-L], [SJK-L] and the references cited there), one could conceive of the
following short exact sequence:

(1.2)

0y
Ext1PMHS

(
Q(0), Hν−1(ηS , R

2r−ν−mρ∗Q(r))
)

Graded polar-
izable MHS

↗ y{
Germs of higher order

generalized normal functions

}
y

homMHS

(
Q(0), Hν(ηS , R

2r−m−νρ∗Q(r))
)

y
0

(Warning: As mentioned earlier, passing to the generic point ηS of S is a limit pro-
cess, which implies that the spaces above need not be finite dimensional over Q. This
particularly applies to the case m ≥ 1, where there are residues.) The key point is, is
there lurking a generalized Poincaré existence theorem for higher normal functions?
Namely, modulo the “fixed part” Ext1PMHS

(
Q(0), Hν−1(ηS , R

2r−ν−mρ∗Q(r))
)
, are

these normal functions cycle-induced? In another direction, this diagram is related
to a geometric description of the notion of a Bloch-Beilinson (BB) filtration. As a
service to the reader, and to make sense of this all, we elaborate on all of this.

1. For the moment, let us replace (ηS by S, (ν,m) by (1, 0) in diagram (1.2), and
where S is chosen to be a curve). Then this diagram represents the schema of the
original Griffiths program aimed at generalizing Lefschetz’s famous (1, 1) theorem,
via normal functions.1 This program was aimed at solving the Hodge conjecture
inductively. Unfortunately, the lack of a Jacobi inversion theorem for the jacobian

1Technically speaking, Griffiths worked with normal functions that extended to the boundary

S\S, but let’s not go there.
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of a general smooth projective variety involving a Hodge structure of weight > 1
led to limited applications towards the Hodge conjecture. However the qualitative
aspects of his program led to the non-triviality of the now regarded Griffiths group.
In that regard, the aforementioned diagram represents a generalization of this idea
to the higher K-groups of X and the general fibers of ρ : X→ S.

2. The notion of a BB filtration, first suggested by Bloch and later fortified by
Beilinson, tells us that for any X/k smooth projective and r,m ≥ 0, there should
be a descending filtration{

F νCHr(X,m;Q)
∣∣ ν = 0, ..., r

}
,

whose graded pieces can be described in terms of extension datum, viz.,

GrνFCHr(X,m;Q) ' ExtνMM(Spec(k), h2r−ν−m(X)(r)),

whereMM is a conjectural category of mixed motives and h•(X)(•) is motivic co-
homology.2 Although there were many excellent candidate BB filtrations proposed
by others over the years, a few are derived from the point of view of “spreads”, in
the case k = Q (see [A], [Lew1], [GG]) as well as a conjectural description in terms
of normal functions (see [K-L], [Lew3]). Namely, if X/C is smooth and projective,
then there is a field K of finite transcendence degree over Q and a smooth and

proper spread X
ρ−→ S of smooth quasi-projective varieties over Q, such that if η is

the generic point of S, then K can be identified with Q(η) via a suitable embedding
Q(η) ↪→ C; moreover with respect to that embedding, X/C = Xη×Q(η)C. Diagram

(1.2) then provides yet another schema of describing a candidate BB filtration in
terms of normal functions.

As indicated earlier, we focus our attention mainly on the case m = 1 (K1 case),
and provide some partial results in the case where X = S ×X is a product, with
S = S, and X smooth projective. Our main results are Theorems 4.4, 6.7 and 6.11.

We wish the express our gratitude to the referee for the careful reading of this
paper, and the various suggestions for improvements.

2. Notation

•0 Unless specified to the contrary, all varieties are defined over C.

•1 Q(m) is the Tate twist with Hodge type (−m,−m).

•2 For a mixed Hodge structure (MHS)H over Q, we put Γ(H) = homMHS(Q(0), H)
and J(H) = Ext1MHS(Q(0), H).

•3 The higher Chow groups CHr(W,m) for a quasi-projective variety W over a field
k are defined in [Bl1]. Let us assume W/k is regular. An abridged definition of
CHr(W, 1), viz., in the case m = 1 is given by:

CHr(W, 1) =
ker
(∑Z irred

cdWZ=r−1(k(Z)×, Z)
div−−→ zr(W )

)
Image of tame symbol

,

where zr(W ) is the free abelian group generated by (irreducible) subvarieties of
codimension r in W ; moreover, the denominator admits this description. If V ⊂W

2The original formulation involved only the case m = 0; this is just a natural extension of
those ideas to the higher K-groups of X.
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is an irreducible subvariety of codimension r − 2, and f, g ∈ k(V )×, then the tame
symbol is given as:

T ({f, g}V ) =
∑

cdVD=1

(−1)νD(f)νD(g)

(
fνD(g)

gνD (f)

)
D

,

as D ranges through all irreducible codimension one subvarieties of V , νD(·) is the
order of a zero or pole, and

(
· · ·
)
D

means the restriction to the generic point of

D. The “Image of the tame symbol” is the subgroup generated by T ({f, g}V ), as
V ranges in W and f, g range through k(V )×.

•4 Assume W in •3 is also smooth of dimension dW , and let Z ⊂W be irreducible
of codimension r− 1, f ∈ k(W )×), where k ⊂ C is a subfield. Then the Betti class
map

clr,1 : CHr(W, 1;Q)→ Γ
(
H2r−1(W,Q(r))

)
⊂ H2r−1(W,Q(r)) '[

H2dW−2r+1
c (W,Q(dW − r))

]∨ ⊂ [H2dW−2r+1
c (W,C)

]∨
is induced by the current

(Z, f) 7→ 1

(2πi)dw−r+1

∫
Z

d log(f) ∧ ω, {ω} ∈ H2dW−2r+1
c (W,C).

3. What is known

In this section, we summarize some of the results in [SJK-L], where r ≥ m = 1.
The setting is the following diagram

X
� � //

ρ

��

X

ρ
��

S �
� // S

where X and S are nonsingular complex projective varieties, ρ is a dominating flat
morphism, D ⊂ S a divisor, Y := ρ−1(D), S := S\D, X := X\Y and ρ := ρ

∣∣
X

.3

There is a short exact sequence

(3.1) 0→ H2r−1(X,Q(r))

H2r−1
Y (X,Q(r))

→ H2r−1(X,Q(r))→ H2r
Y (X,Q(r))◦ → 0,

where with regard to the former term in (3.1), H2r−1
Y (X,Q(r)) is identified with its

image inH2r−1(X,Q(r)), andH2r
Y (X,Q(r))◦ := ker

(
H2r
Y (X,Q(r))→ H2r(X,Q(r))

)
.

One has a corresponding diagram

CHr(X, 1;Q) //

clXr,1

��

CHr
Y(X;Q)◦

αY //

βY

��

CHr
hom(X;Q)

AJX

��

Γ
(
H2r−1(X,Q(r))

) � � // Γ
(
H2r
Y (X,Q(r))◦

)
// J

(
H2r−1(X,Q(r))

H2r−1
Y (X,Q(r))

)(3.2)

well-known to commute by an extension class argument, and where AJX is the
corresponding “reduced” Abel-Jacobi map. Further, the definition of CHr

Y(X;Q)◦

3While we assume that the base field is C, the results here are valid for varieties over an
algebraically closed field k ⊂ C.
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is the obvious one, being the cycles in CHr−1(Y;Q) that are homologous to zero

on X.

Remark 3.3. Poincaré duality gives an isomorphism of MHS:

H2r
Y (X,Q(r)) ' H2 dimX−2r(Y,Q)⊗Q(r − dimX).

Thus kerβY = CHr−1
hom(Y;Q), viz., the subspace of cycles in CHr−1(Y;Q) that are

homologous to zero on Y.

Let us assume that βY is surjective, as is the case if the (classical) Hodge con-
jecture holds. If we apply the snake lemma, we arrive at

coker(clXr,1) '
ker

[
AJX

∣∣
Image(αY)

: Image(αY)→ J

(
H2r−1(X,Q(r))

H2r−1
Y (X,Q(r))

)]
αY
(

ker(βY)
) .

Now take the limit over all D ⊂ S to arrive at an induced cycle map:

(3.4) clηr,1 : CHr(Xη, 1;Q)→ Γ
(
H2r−1(Xη,Q(r))

)
.

where η is the generic point of S. We arrive at:

(3.5)
Γ
(
H2r−1(Xη,Q(r))

)
clηr,1

(
CHr(Xη, 1;Q)

) ' ker

[
K AJ→ J

(
H2r−1(X,Q(r))

N1
S
H2r−1(X,Q(r))

)]
N1
SCHr(X;Q)

,

where K := ker[CHr
hom(X;Q) → CHr(Xη;Q)], Nq

SCHr(X) ⊆ CHr
hom(X;Q) is the

subspace consisting of classes {ξ} such that there is a (pure) codimension q sub-
scheme D ⊂ S together with a representative ξ of {ξ}, for which |ξ| ⊂ ρ−1(D)
and (ignoring twists) the fundamental class of ξ is zero in H2 dimX−2r(ρ

−1(D),Q).

(Compare this with the second sentence of Remark 3.3 when q = 1.) Finally,

Nq

S
H2r−1(X,Q(r)) ⊆ H2r−1(X,Q(r)) is the union of the images ofH2r−1

ρ−1(D)(X,Q(r))→
H2r−1(X,Q(r)), where D runs through the (pure) codimension q subschemes of S.

A relatively simple argument, found in [SJK-L], yields the following.

Proposition 3.6. Under the assumption of the Hodge conjecture, (3.5) becomes:

Γ
(
H2r−1(Xη,Q(r))

)
clηr,1

(
CHr(Xη, 1;Q)

) ' N1
SCHr(X;Q) + ker

[
K AJ→ J

(
H2r−1(X,Q(r))

)]
N1
SCHr(X;Q)

.

Example 3.7. Suppose that X = S with ρ the identity. In this case Proposition 3.6
becomes:

(3.8)
Γ
(
H2r−1(C(X),Q(r))

)
clr,1

(
CHr(Spec(C(X)), 1;Q)

) ' N1CHr(X;Q) + CHr
AJ(X;Q)

N1CHr(X;Q)
,

where N1CHr(X;Q) is the subgroup of cycles, that are homologous to zero on codi-

mension 1 subschemes of X, and CHr
AJ(X;Q) are cycles in the kernel of the Abel-

Jacobi map AJ : CHr(X;Q) → J
(
H2r−1(X,Q(r))

)
. According to Jannsen [Ja1, p.

227], there is a discussion that strongly hints that the right hand side of (3.8) should
be zero. In light of [Lew2], we conjecturally believe this to be true. In particular,

since Spec(C(X)) is a point, this implies that Γ
(
H2r−1(C(X),Q(r))

)
= 0 for r > 1.

The reader can easily check that

clr,1
(
CHr(Spec(C(X)), 1;Q)

)
= Γ

(
H2r−1(C(X),Q(r))

)
,
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holds unconditionally in the case r = dimX, that being well known in the case
r = dimX = 1, and for r = dimX > 1, from the weak Lefschetz theorem for affine
varieties.

Example 3.9. [SJK-L] Here we give some evidence that the RHS (hence LHS) of

Proposition 3.6 is zero. Suppose X = X × S, (S := S), and let us assume the
condition

(3.10) CHr(X;Q) =

r⊕
`=0

CH`(S;Q)⊗ CHr−`(X;Q).

An example situation is when S is a flag variety, such as a projective space; however
conjecturally speaking, this condition is expected to hold for a much broader class
of examples. If we further assume the Hodge conjecture, then as a consequence of
Proposition 3.6, we arrive at:

Corollary 3.11. Under the assumptions of the Künneth condition in (3.10) above,

and the Hodge conjecture, with X = S ×X, if

cl`,1
(
CH`(Spec(C(S)), 1;Q)

)
= Γ

(
H2`−1(C(S),Q(`))

)
,

holds for all ` ≤ r, then the map clηr,1 in (3.4) is surjective.

4. The split case and rigidity

4.1. Base a curve. In this section, we observe that the Beilinson-Hodge conjecture
(Conjecture 1.1), in the special case of a split projection with base given by a curve,
holds under the assumption of the Hodge conjecture on the fibre. LetX be a smooth
projective variety and C a smooth curve. Let π : C×X → C denote the projection
morphism.

Proposition 4.1. Let X and C be as above.

(1) If m > 1, then CHr(C ×X,m)→ Γ(H2r−m(C ×X,Q(r))) is surjective.
(2) If m = 1, then CHr(C ×X,m) → Γ(H2r−m(C ×X,Q(r))) is surjective if

the Hodge conjecture holds for X in codimension r − 1.

In particular, the Beilinson Hodge conjecture (Conjecture 1.1) for π : C×X → C
holds unconditionally if m > 1 and, if m = 1, then it holds under the assumption
of the Hodge conjecture for X.

We begin with some preliminary reductions. By the Künneth decomposition we
can identify H2r−m(C ×X,Q) with

2⊕
i=0

Hi(C,Q)⊗H2r−m−i(X,Q) .

For i = 0 and 2, Hi(C,Q) ⊗ H2r−m−i(X,Q)(r) is pure of weight −m by the
purity of H2r−m−i(X,Q) and that of H0(C,Q) as well as H2(C,Q). Therefore
Γ(Hi(C,Q) ⊗H2r−m−i(X,Q)(r)) = 0 for m > 0 and i 6= 1. The same also holds
for i = 1 if C is projective. But in general we have the following.

Lemma 4.2. With notation and assumptions as above,

Γ
(
H1(C,Q)⊗H2r−2(X,Q)(r)

)
= Γ(H1(C,Q(1)))⊗ Γ(H2r−2(X,Q(r − 1))).



BEILINSON’S HODGE CONJECTURE 7

Proof. Let H denote H2r−2(X,Q(r − 1)). Setting Wj = WjH
1(C,Q(1)) gives the

following commutative diagram of mixed Hodge structures with exact rows:

0 // W−1 ⊗H // W0 ⊗H // GrW0 ⊗H // 0

0 // W−1 ⊗ Γ(H) //

OO

W0 ⊗ Γ(H) //

OO

GrW0 ⊗ Γ(H) //

OO

0

Since W−1 ⊗ H and W−1 ⊗ Γ(H) have negative weights, their Γ’s are trivial. It
follows that we have a commutative diagram with exact rows:

0 // Γ(W0 ⊗H) // Γ(GrW0 ⊗H) // J(W−1 ⊗H)

0 // Γ(W0 ⊗ Γ(H)) //

OO

Γ(GrW0 ⊗ Γ(H)) //

OO

J(W−1 ⊗ Γ(H))

OO

Since GrW0 is pure Tate of weight 0, the middle vertical is an isomorphism. We also
have an injection H1(C,Q)→ H1(C,Q), identifying W−1 with H1(C,Q(1)). Using
semi-simplicity of polarized Hodge structures we see that the natural injection

W−1 ⊗ Γ (H)→W−1 ⊗H

is split, so that we obtain a split injection

J (W−1 ⊗ Γ(H))→ J (W−1 ⊗H) .

Finally, noting that Γ(W0 ⊗ Γ(H)) = Γ(W0) ⊗ Γ(H) and using the snake lemma
gives the desired result. �

Proof of Proposition 4.1. If m > 1, then by a weight argument

Γ(H1(C,Q)⊗H2r−m−1(X,Q)(r)) = 0

and the surjectivity is trivial. For r arbitrary, and m = 1, first note that CH1(C, 1)
maps surjectively to Γ(H1(C,Q(1))). Under the assumption of the Hodge conjec-
ture for X in codimension r − 1, one also has that

CHr−1(X, 0;Q)→ Γ
(
H2r−2(X,Q(r − 1))

)
is surjective. Since the natural morphism

CH1(C, 1)⊗ CHr−1(X, 0)→ CHr(C ×X, 1)

induced by pullback to C ×X followed by the cup product is compatible with the
tensor product in the Künneth decomposition, the previous remarks and Lemma 4.2
show that clr,1 surjects onto Γ(H1(C,Q)⊗H2r−2(X,Q)(r)). The last claim in the
proposition follows from the first two by taking limits over open U ⊂ C.

�

Remark 4.3. Note that in the situation above, the surjectivity in Conjecture 1.1
holds for every open U ⊂ C, and, in particular, one does not need to pass to the
generic point. However, in general, in the examples of [dJ-L, Section 5] one has to.
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4.2. Base a product of two curves. In this section, we prove the strong form
(i.e., without passing to the generic point) of the Beilinson-Hodge conjecture (Con-
jecture 1.1) for r = 2 and m = 1 in the special case of a split projection with base
given by a product of two curves, under a certain rigidity assumption (see below).
More precisely, let X be smooth projective, and C1, C2 smooth projective curves,
with non-empty open Cj ( Cj . Let S = C1 × C2, S = C1 × C2, Σj = Cj\Cj , and

E = S\S = Σ1 × C2 ∪ C1 × Σ2. Finally, let X = S ×X and let π : X→ S denote
the canonical projection map.

Theorem 4.4. Let X and S be as above. If H2(S,Q) does not have a non-zero Q
subHodge structure contained in H2,0(S)⊕H0,2(S), then

cl2,1 : CH2(S ×X, 1;Q)→ Γ
(
H3(S ×X,Q(2))

)
is surjective.

Note that if we were to replace S with C1 ×C2 or S = C1 ×C2, then the result
is already part of Proposition 4.1. Again this holds even if the Ci are complete by
reduction to the case of one curve in the base.

We begin with some preliminary reductions. First observe that, as dimS = 2,
by the weak Lefschetz theorem for affine varieties, the Künneth decomposition of
H3(S ×X,Q) is

H0(S,Q)⊗H3(X,Q)⊕H1(S,Q)⊗H2(X,Q)⊕H2(S,Q)⊗H1(X,Q) ,

and we shall deal with the three summands separately (after twisting with Q(2)).

For the first term, note that H0(S,Q) ⊗ H3(X,Q)(2) is pure of weight −1 by
the purity of H3(X,Q), so that Γ(H0(S,Q)⊗H3(X,Q)(2)) = 0.

Lemma 4.5. With notation as above,

Γ
(
H1(S,Q)⊗H2(X,Q)(2)

)
= Γ(H1(S,Q(1)))⊗ Γ

(
H2(X,Q(1))

)
and the image of

cl2,1 : CH2(S ×X, 1;Q)→ Γ
(
H3(S ×X,Q(2))

)
contains the direct summand Γ

(
H1(S,Q)⊗H2(X,Q)(2)

)
.

Proof. The equality is obtained as in the proof of Lemma 4.2. Furthermore, the
proof of the surjectivity of cl2,1 is similar to the proof of Proposition 4.1, noting
that the remarks about the compatibility of the cup product of pullbacks along the
projections S ×X → S and S ×X → X is compatible with the tensor product in
the Künneth decomposition yield that the image of the elements we obtain are in
Γ
(
H1(S,Q)⊗H2(X,Q)(2)

)
. We leave the details to the reader. �

Before proving Theorem 4.4, we note that by Lemma 4.5 and the two paragraphs
preceeding it, it now suffices to show that the image of cl2,1 followed by the projec-
tion H3(S ×X,Q)→ H2(S,Q)⊗H1(X,Q) contains Γ

(
H2(S,Q)⊗H1(X,Q)(2)

)
.

The following lemma describes this last space in terms of the Abel-Jacobi map.
First put

H3
E(S,Q)◦ = ker

[
H3
E(S,Q)→ H3(S,Q)

]
.
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Lemma 4.6. One has these identifications:

(i) Γ
(
H2(S,Q)⊗H1(X,Q)(2)

)
'

ker
[
Γ
(
H3
E(S,Q(2))◦⊗H1(X,Q)

)
→ J

(
H1(C1,Q(1))⊗H1(C2,Q(1))⊗H1(X,Q)

)]
.

(ii) Γ
(
H3
E(S,Q(2))◦ ⊗H1(X,Q)) '

Γ

([
H1(C1,Q)⊗H0

deg 0(Σ2,Q)
⊕

H0
deg 0(Σ1,Q)⊗H1(C2,Q)

]
⊗H1(X,Q(1))

)
.

Proof. Part (i): Observe that

H2(S,Q)

H2
E(S,Q)

= H1(C1,Q)⊗H1(C2,Q), H2(S,Q) = H1(C1,Q)⊗H1(C2,Q),

as H2(Cj) = 0. There is a short exact sequence:

0→ H2(S,Q)

H2
E(S,Q)

→ H2(S,Q)→ H3
E(S,Q)◦ → 0.

This in turn gives rise to a short exact sequence:

0→ H1(C1,Q(1))⊗H1(C2,Q(1))⊗H1(X,Q)→

H1(C1,Q(1))⊗H1(C2,Q(1))⊗H1(X,Q)→ H3
E(S,Q(2))◦ ⊗H1(X,Q)→ 0.

So, using purity,

Γ
(
H1(C1,Q(1))⊗H1(C2,Q(1))⊗H1(X,Q)

)
can be identified with

ker
[
Γ
(
H3
E(S,Q(2))◦⊗H1(X,Q)

)
→ J

(
H1(C1,Q(1))⊗H1(C2,Q(1))⊗H1(X,Q)

)]
.

Part (ii): Poincaré duality gives an isomorphism of MHS
(4.7)
H3
E(S,Q(2)) ' H1(E,Q), hence H3

E(S,Q(2))◦ ' ker
(
H1(E,Q)→ H1(S,Q)

)
.

Moreover the Mayer-Vietoris sequence gives us the exact sequence

0→
[
H1(C1 × Σ2,Q)⊕H1(Σ1 × C2,Q)

]
⊗H1(X,Q)

→ H1(E,Q)⊗H1(X,Q)→ H0(Σ1 × Σ2,Q)⊗H1(X,Q) .

But Γ
(
H0(Σ1×Σ2,Q)⊗H1(X,Q)

)
= 0; moreover one has a commutative diagram

H1(C1 × Σ2,Q)⊕H1(Σ1 × C2,Q) ↪→ H1(E,Q)
||

∣∣
H1(C1,Q)⊗H0(Σ2,Q)⊕H0(Σ1,Q)⊗H1(C2,Q)

∣∣y y
H1(C1,Q)⊗H0(C2,Q)⊕H0(C1,Q)⊗H1(C2,Q) ' H1(S,Q).

Hence from this and (4.7), Γ
(
H3
E(S,Q(2))◦ ⊗H1(X,Q)

)
can be identified with

Γ

([
H1(C1,Q)⊗H0

deg 0(Σ2,Q)
⊕

H0
deg 0(Σ1,Q)⊗H1(C2,Q)

]
⊗H1(X,Q(1))

)
.

�
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Proof of Theorem 4.4. Note that by the Lefschetz (1,1) theorem, Γ
(
H1(Cj ,Q) ⊗

H1(X,Q)(1)
)

is algebraic. Let us assume for the moment that there exists B

in Γ
(
H0

deg 0(Σ1,Q) ⊗ H1(C2,Q) ⊗ H1(X,Q(1))
)

of the form B = ξ × D, where

D ⊂ C2 ×X is an irreducible curve, ξ ∈ H0
deg 0(Σ1,Q), and that B is in the kernel

of the Abel-Jacobi map in Lemma 4.6(i). Notice that the inclusion H1(C1,Q(1))⊗
Q(1)·[D] ↪→ H1(C1,Q(1))⊗H1(C2,Q(1))⊗H1(X,Q) defines a splitting, and hence
an inclusion

J
(
H1(C1,Q(1))

)
↪→ J

(
H1(C1,Q(1))⊗H1(C2,Q(1))⊗H1(X,Q)

)
.

By applying Abel’s theorem to C1, it follows that there exists f ∈ C(C1 ×D)× for
which (f) = ξ×D = B, thus supplying the necessary element in CH2(S×X, 1;Q).
The same story holds if we replace D by any divisor with non-trivial image in the
Neron-Severi group. Using a basis for the Neron-Severi group of C2 ×X, one sees
that the kernel of the Abel-Jacobi map restricted to Γ

(
H0

deg 0(Σ1,Q)⊗H1(C2,Q)⊗
H1(X,Q(1))

)
is in the image of cl2,1. A similar story holds separately for A in

Γ
(
H1(C1,Q)⊗H0

deg 0(Σ2,Q)⊗H1(X,Q(1))
)

in the kernel of the Abel-Jacobi map.
The more complicated issue is the case where A+B in

Γ

([
H1(C1,Q)⊗H0

deg 0(Σ2,Q)
⊕

H0
deg 0(Σ1,Q)⊗H1(C2,Q)

]
⊗H1(X,Q(1))

)
is in the kernel of the Abel-Jacobi map. The problem boils down to the follow-
ing. There are two subHodge structures V1, V2 of H1(C1,Q(1))⊗H1(C2,Q(1))⊗
H1(X,Q), where V1 = H1(C1,Q(1)) ⊗ Γ

(
H1(C2,Q(1)) ⊗ H1(X,Q)

)
, and V2 '

H1(C2,Q(1))⊗ Γ
(
H1(C1,Q(1))⊗H1(X,Q)

)
is defined similarly. If their intersec-

tion V is trivial, then

J(V1)⊕ J(V2) ↪→ J
(
H1(C1,Q(1))⊗H1(C2,Q(1))⊗H1(X,Q)

)
,

so A+B in the kernel of the Abel-Jacobi map implies that A, B are in the kernel,
and from our earlier discussion it follows that then

cl2,1 : CH2(S ×X, 1;Q)→ ΓH3(S ×X,Q(2))

is surjective. If V is non-trivial, then from types we see that V (−2) is contained in{
H1,0(C1)⊗H1,0(C2)⊗H0,1(X)

}⊕{
H0,1(C1)⊗H0,1(C2)⊗H1,0(X)

}
inside H2(S,Q) ⊗ H1(X,Q). Tensoring this with H2d−1(X,Q(d)), where d =
dimX, and applying the cup product,

H1(X,Q)×H2d−1(X,Q(d))
∪−→ H2d(X,Q(d)),

followed by the identification H2d(X,Q(d)) ' Q(0), we find that V (−2) results in a
non-trivial Q-subHodge structure of H2(S,Q) contained in H2,0(S)

⊕
H0,2(S). �

We conclude this section with some discussion of the rigidity condition appearing
in Theorem 4.4.

Example 4.8. If C1, C2 are elliptic curves, then the existence of a Q-dimension
2 Hodge structure V ⊂ H2,0(C1 ×C2)⊕H0,2(C1 ×C2) is equivalent to a maximal
Neron-Severi group of C1 × C2 of rank 4, which is well known to be equivalent to
C1 and C2 being isogenous and of CM type by the (same) imaginary quadratic field
([H]( IV, Thm. 4.19)).
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This example leads to:

Question 4.9. Let W be a smooth projective surface. If H2,0(W ) ⊕ H0,2(W ) is
the complexification of a non-zero Q-subHodge structure of H2(W,Q), can W be
obtained by base extension from a surface defined over Q?

Proposition 4.10. Suppose X is a K3 surface or an abelian surface. Then the
answer to the previous question is positive.

Proof. In both cases, H0,2 is one dimensional, so the assumption implies that
H2,0(W ) ⊕ H0,2(W ) arises from a Q-subHodge structure of H2(W,Q). Since the
former is a Hodge structure of type (1, 0, 1), it follows that its Mumford-Tate group
is abelian. In the case of an abelian surface, this implies that the Mumford-Tate
group of the abelian variety is abelian, and therefore the abelian surface has com-
plex multiplication. On the other hand, every CM abelian variety over C is defined
over number field. If W is a K3 surface, then it has maximal Picard rank, hence is
well-known to be rigid, a fortiori, defined over Q. �

Remark 4.11. In spite of the mild “rigidity” assumption in Theorem 4.4, any
attempt to extend the theorem to the generic point of S, without introducing some
conjectural assumptions, seems incredibly difficult.

5. Generalities

Before proceeding further, and to be able to move further ahead, we explain
some necessary assumptions. For the remainder of this paper (with the occasional
reminder), we assume the following:

Assumptions 5.1. (i) The Hodge conjecture.

(ii) The Bloch-Beilinson conjecture on the injectivity of the Abel-Jacobi map for
Chow groups of smooth projective varieties defined over Q (see [Lew2, Conj 3.1 and
§4]).

To spare the reader a time consuming search of multiple sources by many others,
we refer mostly to [Lew2], for all the necessary statements and details. Let Z/C be
any smooth projective variety of dimension d0, r ≥ 0, and put

CHr
AJ(Z;Q) = ker

(
AJ : CHr

hom(Z;Q)→ J
(
H2r−1(Z,Q(r))

)
.

As mentioned in §1, we recall the notion of a descending Bloch-Beilinson (BB)
filtration {F νCHr(Z;Q)}ν≥0, with F 0CHr(Z;Q) = CHr(Z;Q), F 1CHr(Z;Q) =
CHr

hom(Z;Q), F r+1CHr(Z;Q) = 0, and satisfying a number of properties codified
for example in [Ja2, §11], [Lew2, §4]. There is also the explicit construction of a
candidate BB filtration by Murre, based on a conjectured Chow-Künneth decom-
position, and subsequent conjectures in [M], which is equivalent to the existence of
a BB filtration as formulated in [Ja2, §11]). Further, Jannsen also proved that the
BB filtration is unique if it exists. The construction of the filtration in [Lew1] (and
used in [Lew2]) relies on Assumptions 5.1, which if true, provides the existence of
a BB filtration, and hence is the same filtration as Murre’s, by the aforementioned
uniqueness.

All candidate filtrations seem to show that F 2CHr(Z;Q) ⊆ CHr
AJ(Z;Q). The

following is considered highly non-trivial:

Conjecture 5.2. CHr
AJ(Z;Q) = F 2CHr(Z;Q).
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In light of Assumptions 5.1, this is equivalent to the surjectivity of

clr,1 : CHr(Spec(C(Z)), 1;Q) � Γ
(
H2r−1(C(Z),Q(r))

)
as in [dJ-L, (S3)], provided both statements apply to all smooth projective Z/C.
For a proof, see [Lew2, Thm 1.1].

One of the key properties of the BB filtration is the factorization of graded
pieces of that filtration through the Grothendieck motive. Let ∆Z in CHd0(Z ×Z)
be the diagonal class, with cohomology class [∆Z ] in H2d0(Z × Z,Z(d0)). Write

∆Z =
∑
p+q=2d0

∆Z(p, q) in CHd0(Z × Z;Q) such that⊕
p+q=2d0

[∆Z(p, q)] ∈
⊕

p+q=2d0

Hp(Z,Q)⊗Hq(Z,Q)(d0) = H2d0(Z × Z,Q(d0)).

is the Künneth decomposition of [∆Z ]. Then

∆Z(p, q)∗
∣∣
GrνFCHr(Z;Q)

is independent of the choice of ∆Z(p, q). (This is essentially due to the fact that
F 1CHr(Z;Q) = CHr

hom(Z;Q), and functoriality properties of the BB filtration.)
Furthermore,

(5.3) ∆Z(2d0 − 2r + `, 2r − `)∗
∣∣
GrνFCHr(Z;Q)

= δ`,ν idGrνFCHr(Z;Q)

with δi,j the Kronecker delta. Consequently,

(5.4) ∆Z(2d0 − 2r + ν, 2r − ν)∗CHr(Z;Q) ' GrνFCHr(Z;Q),

and accordingly there is a non-canonical decomposition

CHr(Z;Q) =

r⊕
ν=0

∆Z(2d0 − 2r + ν, 2r − ν)∗CHr(Z;Q).

In summary, we will view the kernel of the Abel-Jacobi map in terms ofGrνFCHr(Z;Q)
for ν ≥ 2, i.e., under Conjecture 5.2,

CHr
AJ(Z;Q) = F 2CHr(Z;Q) '

r⊕
ν=2

GrνFCHr(Z;Q),

(to re-iterate, non-canonically).

Remark 5.5. Murre’s Chow-Künneth decomposition [M] is by definition a decom-
position of the diagonal class

∆Z =
∑

p+q=2d0

∆Z(p, q) in CHd0(Z × Z;Q),

where the ∆Z(p, q)’s are commuting, pairwise orthogonal idempotents. By Beilinson
and Jannsen, such a lift from a corresponding decomposition on cohomology is
possible if CHd0

hom(Z × Z;Q) is a nilpotent ideal under composition, which is a
consequence of Assumptions 5.1. It should be pointed out that such ∆Z(p, q)’s are
still not unique.

The following will play an important role in Section 6.
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Proposition 5.6. Under Assumptions 5.1, the map

ΞZ,∗ :=

r⊕
ν=2

∆Z(2d0 − 2r + ν, 2r − ν)∗ : F 2CHr(Z;Q)→ F 2CHr(Z;Q),

is an isomorphism. Moreover, if the ∆Z(p, q)’s are chosen as in Murre’s Chow-
Künneth decomposition (viz., in Remark 5.5), then it is the identity.

Proof. If r = 2, this is obvious, as F rCHr(Z;Q) = GrrFCHr(Z;Q). So assume
r > 2. The 5-lemma, together with the diagram

F rCHr(Z;Q)

||

0 → GrrFCHr(Z;Q) → F r−1CHr(Z;Q) → Grr−1F CHr(Z;Q) → 0

ΞZ,∗

y|| ΞZ,∗

y ΞZ,∗

y||
0 → GrrFCHr(Z;Q) → F r−1CHr(Z;Q) → Grr−1F CHr(Z;Q) → 0

tells us that the middle vertical arrow is an isomorphism. By an inductive-recursive
argument, we arrive at another 5-lemma argument:

0 → F 3CHr(Z;Q) → F 2CHr(Z;Q) → Gr2FCHr(Z;Q) → 0

ΞZ,∗

yo ΞZ,∗

y ΞZ,∗

y||
0 → F 3CHr(Z;Q) → F 2CHr(Z;Q) → Gr2FCHr(Z;Q) → 0

which implies the isomorphism in the proposition.

For the second statement, clearly ∆Z = ⊕2r
`=2r−2d0∆Z(2d0 − 2r + `, 2r − `)

induces the identity. But from (5.4) we see that the terms with ` ≥ r + 1 do
not contribute because Gr`FCHr(Z;Q) = 0. Also, from (5.3) we find that if ` 6= ν,
then ∆Z(2d0 − 2r + `, 2r − `) maps F νCHr(Z;Q) into F ν+1CHr(Z;Q). But if
` < ν and this correspondence is idempotent then we can iterate this, finding it
kills F νCHr(Z;Q) as F r+1CHr(Z;Q) = 0. Taking ν = 2, we are done. �

So to understand more about CHr
AJ(Z;Q), it makes sense to study

∆Z(2d0 − 2r + ν, 2r − ν)∗CHr
AJ(Z;Q),

for 2 ≤ ν ≤ r.

6. Main results

In this section, we will be assuming Assumptions 5.1 as well as Conjecture 5.2.
We shall also assume that we are working with Murre’s Chow-Künneth decomposi-
tion. Furthermore, S and X are assumed smooth and projective, with dimS = N ,
dimX = d. Then we have the results of Section 5 for Z = S ×X, with dimension
d0 = N + d.
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Remark 6.1. This remark is critical to understanding our approach to the main
results in the remainder of this paper. We want to take some earlier results, in
particular Proposition 5.6, one step further. Let us assume the notation and setting
in Proposition 3.6, for X = S×X, with K as in (3.5). Our goal is to show that the
RHS of Proposition 3.6 is zero; in particular, that

Ξ0 := ker
(
AJ : K → J

(
H2r−1(S ×X,Q(r))

))
is contained in N1

S
CHr(S ×X;Q(r)). Proposition 5.6 shows that the induced map

(6.2)

r⊕
ν=2

∆S×X(2(N + d)− 2r + ν, 2r − ν)∗ : Ξ0 → Ξ0,

is the identity.

Below we only consider ` ≤ N since ultimately we will be passing to the generic
point ηS of S, hence through an affine S ⊂ S, where we apply the affine weak

Lefschetz theorem, with D = S\S. Although not needed, we could also take ` ≥ 2
because the cases ` = 0, 1 can be proved as in the proof of Proposition 4.1(2).

Note that

(6.3) Γ
(
H2r−1(S ×X,Q(r))

)
=

N⊕
`=1

Γ

(
H`(S,Q(1))⊗H2r−`−1(X,Q(r − 1))

)
,

hence we break down our arguments involving each of the N terms on the RHS
of (6.3). This is similar to how we handled things in §4. Note that if we apply
the Künneth projector [∆S ⊗∆X(2d − 2r + ` + 1, 2r − ` − 1)]∗ to the short exact
sequence in (3.1) of §3 (with Y = D ×X), where the action of the aforementioned
Künneth projector on H2r−1(S × X,Q(r)) is given by Pr13,∗

(
Pr∗23[∆X(2d − 2r +

`+ 1, 2r− `− 1)]∪Pr∗12(−)
)
, observing that both Pr13, Pr12 : S×X ×X → S×X

are proper and flat, we end up with the short exact sequence:

0→
{
H`(S,Q(1))

H`
D(S,Q(1))

}
⊗H2r−`−1(X,Q(r−1))→ H`(S,Q(1))⊗H2r−`−1(X,Q(r−1))

→ H`+1
D (S,Q(1))◦ ⊗H2r−`−1(X,Q(r − 1))→ 0,

where
H`+1
D (S,Q)◦ = ker

(
H`+1
D (S,Q)→ H`+1(S,Q)

)
.

This accordingly modifies the bottom row of (3.2) of §3 in the obvious way. As
a reminder, the Künneth components cycle representatives ∆X(2d − •, •) of the
diagonal class ∆X (and of ∆S , hence the product ∆S×X = ∆S ⊗ ∆X) are now
assumed chosen in the sense of Murre (see Remark 5.5). So we can likewise apply
the projector ∆S ⊗∆X(2d−2r+ `+ 1, 2r− `−1) to the top row of (3.2) of §3, and
arrive at a modified commutative diagram (3.2), based on ` = 1, ..., N . We can be
more explicit here. For the sake of brevity, let us denote ∆X(2d−2r+`+1, 2r−`−1)

in CHd(X × X;Q) here with P , and let Y = D × X for some codimension one
subscheme D ⊂ S. Then ∆S⊗P acts on CHr(S×X, 1;Q) in a natural way, and its

action on CHr
D×X(S ×X;Q) is given as follows. First of all, CHr

D×X(S ×X;Q) =

CHr−1(D × X;Q). There are proper flat maps D × X × X given by projections
Pr12 : D×X×X → D×X, Pr23 : D×X×X → X×X and Pr13 : D×X×X →
D ×X. For γ in CHr−1(D ×X;Q), Pr∗12(γ) in CHr−1(D ×X ×X;Q) is defined

(flat pullback). For P ∈ CHd(X × X;Q), the intersection Pr∗12(γ) • Pr∗23(P ) ∈
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CHr−1+d(D×X×X;Q) is likewise well defined [F, §2]. The action then is given by
Pr13,∗

(
Pr∗12(γ) • Pr∗23(P )

)
in CHr−1(D×X;Q) = CHr

D×X(S ×X;Q). The action

of ∆S ⊗ P on CHr
hom(S ×X;Q) is clear. Finally, by an elementary Hodge theory

argument, one arrives at a modified version of Proposition 3.6. Specifically, ∆S⊗P
acts naturally on all terms on the RHS of the display in Proposition 3.6, making
use of functoriality of the Abel-Jacobi map, and operates naturally on the LHS, as
clearly evident in the above discussion following (6.3). As ` ranges from 1, ..., N ,
both sides of the aforementioned display decompose accordingly into a direct sum.

We need to determine what ∆S ⊗ ∆X(2d − 2r + ` + 1, 2r − ` − 1) does to γ,

which is an algebraic cycle of codimension r (dimension N + d− r) on S ×X, but
supported on D ×X. Decomposing ∆S , we can write

∆S×X(2(N + d)− 2r + ν, 2r − ν),

as a sum of

(6.4) ∆S(2N + ν − `− 1, `+ 1− ν)⊗∆X(2d− 2r + `+ 1, 2r − `− 1).

We recall that we have 2 ≤ ν ≤ r, and, as indicated earlier, only consider ` with
2 ≤ ` ≤ N . Before stating our next result, it is helpful to introduce the following,
which includes those S which are complete intersections in projective space or more
generally a Grassmannian.

Lemma 6.5. Suppose that S is a variety of dimension N such that for i 6= N :

Hi(S,Q) is zero for i odd and generated by algebraic cycles for i even.

Then S admits a Chow-Künneth decomposition in the sense of [M], Remark 5.5
with the supports of the Künneth projectors compatible with the supports of the co-
homology classes in H•(S,Q). Specifically, for j 6= N , ∆S(2N−2j, 2j) is contained

in the image of CHN−j(S;Q) ⊗ CHj(S;Q) under pullback to CHN (S × S;Q) and
taking the product.

Proof. For j = 0, . . . , N , let W2N−2j in CHN−j(S,Q) and V2j in CHj(S,Q) be
algebraic cycles such that λj := deg

(
〈W2N−2j , V2j〉S

)
6= 0. Then

{
W2N−2k × V2k

}
◦
{
W2N−2j × V2j

}
=

{
0 if k 6= j

λj · {W2N−2j × V2j} if k = j

To see this, compute
{
W2N−2k × V2k

}
◦
{
W2N−2j × V2j

}
as

(6.6) Pr13,∗
(
〈Pr∗12(W2N−2k × V2k), P r∗23(W2N−2j × V2j)〉S×S×S

)
in CHN (S ×S;Q). If j = k the statement is clear. If k > j then V2k ∩W2N−2j = 0
by codimension, and if k < j then this intersection has dimension at least 1, so (6.6)
has codimension bigger than N . In either case it is trivial. This principle allows
us to define, for i 6= N , mutually orthogonal idempotents πi in CHN (S × S;Q)
with [πi] in H2N−i(S,Q)⊗Hi(S,Q)(N). We can take πi = 0 if i 6= N odd, so that
[πi] = [∆(2N−i, i)] = 0 by our assumption on the odd cohomology groups. For even
i = 2j 6= N , we can arrange that [π2j ] = [∆(2N − 2j, 2j)] by using the assumption
about the even cohomology groups being generated by algebraic cocyles, as well as
the non-degeneracy of the intersection product. Put πN = ∆S−

∑
i6=N πi. Because

the πi for i 6= N are mutually orthogonal idempotents by construction, the same
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holds if we use all π0, . . . , π2N . Because [πi] = [∆S(2N − i, i)] for i 6= N , it follows
from the definition of πN that [πN ] = [∆S(N,N)] as well. �

Theorem 6.7. Suppose that S is a variety of dimension N such that for i 6= N :

Hi(S,Q) is zero for i odd and generated by algebraic cycles for i even.

Given Assumptions 5.1 and Conjecture 5.2, then

CHr(XηS
, 1;Q)→ Γ

(
H2r−1(XηS

,Q(r))
)
,

is surjective.

Proof. We shall use the Chow-Künneth decomposition of ∆S as in Lemma 6.5.
Observe that with regard to (6.4),

∆S(2N + ν − `− 1, `+ 1− ν) = ∆S(N,N)⇔ `+ 1− ν = N.

But ` ≤ N and ν ≥ 2, so this never happens. Also, the situation where `+1−ν = 0
does not contribute. Namely, remember that γ ∈ CHr

D×X(S × X;Q)◦ maps to a

class in CHr
AJ(S×X;Q). Since |γ| ⊂ D×X, ∆S(2N, 0) = {p}×S for some p ∈ S,

so that D × S doesn’t meet ∆S(2N, 0) for a suitable choice of p, it follows in this
case that (

∆S(2N, 0)⊗∆X(2d− 2r + ν, 2r − ν)
)
∗(γ) = 0.

For 1 ≤ `+ 1− ν ≤ N − 1, and γ in K, we have that(
∆S(2N + ν − `− 1, `+ 1− ν)⊗∆X(2d− 2r + `+ 1, 2r − `− 1)

)
∗(γ)

is in N1
S

CHr(S×X;Q). This is immediate from the fact that γ is null-homologous

on S ×X and the support of the Chow-Künneth components here, as described in
Lemma 6.5. Hence by Proposition 3.6 (more precisely, the incarnation of Proposi-
tion 3.6 in the discussion following (6.3)), and (6.2) of Remark 6.1,

CHr(XηS
, 1;Q)→ Γ

(
H2r−1(XηS

,Q(r))
)
,

is surjective. �

6.1. Grand finale. For our final main result, we again consider S = C1 × · · · ×
CN , a product of smooth complete curves (cf. Section 4.2). As before, we restrict
ourselves to 2 ≤ ` ≤ N . Let us write

∆Cj
= ej × Cj + ∆Cj

(1, 1) + Cj × ej ,

where ej ∈ Cj and ∆Cj
(1, 1) is defined by the equality. Consider the decomposition

(6.8) ∆S = ∆C1
⊗ · · · ⊗∆CN

=

N⊗
j=1

{
ej × Cj + ∆Cj

(1, 1) + Cj × ej
}
.

Note that ∆S(D) = D. It needs to be determined what the RHS of (6.8) does
to D, and more precisely, what ∆S ⊗ ∆X(2d − 2r + ` + 1, 2r − ` − 1) does to γ,
which is an algebraic cycle of dimension N + d − r supported on D ×X. Now up
to permutation, the RHS of (6.8) is made up of terms of the form

(6.9) (∆Cj
(1, 1))⊗

k1
j=1 ⊗ ({ej × Cj})⊗

k1+k2
j=k1+1 ⊗ ({Cj × ej})⊗

N
j=k1+k2+1 ,

which is in the (k1 + 2k2, 2N − k1 − 2k2)-component of ∆S . Because in (6.4) we
want ∆S(2N + ν − `− 1, `+ 1− ν), we have

(6.10) 2N + ν − `− 1 = k1 + 2k2.
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Clearly, we have 0 ≤ k1 + k2 ≤ N , 2 ≤ ν ≤ r, and we are restricting ourselves
to 2 ≤ ` ≤ N . Notice that if k1 + k2 < N , we arrive at the situation where a
correspondence in (6.8), which when tensored with ∆X , takes γ to an element of
N1
S

CHr(S ×X;Q). If k1 + k2 = N , then from (6.10), N + ν − `− 1 = k2 ≤ N , and
hence ν ≤ `+ 1. As in the proof of Theorem 6.7, we can ignore the case ν = `+ 1.

Theorem 6.11. Under Assumption 5.1, and Conjecture 5.2, if S = C1×· · ·×CN
is a product of smooth complete curves and X a smooth projective variety, then for
any r ≥ 1,

CHr(XηS
, 1;Q)→ Γ

(
H2r−1(XηS

,Q(r))
)
,

is surjective.

Proof. We will prove this by induction on N ≥ 1, the case N = 1 being part of
Proposition 4.1(2). It will be crucial that no part of ∆S(N,N) occurs because
` ≤ N and ν ≥ 2 imply ` + 1 − ν < N . We shall argue on the summands of ∆S

that, up to a permutation, are as in (6.9). The reductions preceding the theorem
allow us to assume k1 + k2 = N , and that 1 ≤ k2 ≤ N − 1. We see (6.9) is

Ξ := ∆C1
(1, 1)⊗ · · · ⊗∆Ck1

(1, 1)⊗ {ek1+1 × Ck1+1} ⊗ · · · ⊗ {eN × CN}

which is in the (N + k2, N − k2)-component of ∆S . Now let D ⊂ S have codimen-
sion 1. By choosing {ek1+1, ..., eN} appropriately, we can assume that

D′ :=
∣∣Ξ[D]

∣∣⊆E × Ck1+1 × · · · × CN
where E ⊂ C1 × · · · × Ck1 has codimension 1. Let γ ∈ CHr

AJ(S × X;Q) =
F 2CHr(S ×X;Q), supported on D ×X, represent a class

[γ] ∈ Γ
(
H`+1
D (S,Q(1))◦ ⊗H2r−`−1(X,Q(r − 1))

)
,

where
H`+1
D (S,Q(1))◦ = ker

(
H`+1
D (S,Q(1))→ H`+1(S,Q(1))

)
.

Then taking note of (6.4), together with functoriality of the Abel-Jacobi map,

γ′ := Ξ∗(γ) ∈ CHr
AJ(S ×X;Q),

is supported on D′ ×X. Indeed, we have

[γ′] ∈ Γ
(
H`+1
D′ (S,Q(1))◦ ⊗H2r−`−1(X,Q(r − 1))

)
.

By the properties of the BB filtration, and in light of Remark 6.1, we can reduce to
the case where γ = γ′ and D = D′. Notice that we have a Künneth decomposition
(indexed by j).

H`+1
D′ (S,Q)◦ =

2k1−1⊕
j=1

Hj+1
E (C1 × · · · × Ck1 ,Q)◦ ⊗H`−j(Ck1+1 × · · · × CN ,Q),

and [γ′] decomposes accordingly. By fixing a j, and taking the jth component of
[γ′], we may assume [γ′] lies in

Γ
(
Hj+1
E (C1×· · ·×Ck1 ,Q(1))◦⊗H`−j(Ck1+1×· · ·×CN ,Q)⊗H2r−`−1(X,Q(r−1))

)
.

Now let’s put S0 = C1 × · · · × Ck1 and X0 = Ck1+1 × · · · × CN × X. Then
S0 ×X0 = S ×X, and γ′ ∈ CHr

AJ(S0 ×X0;Q) is supported on E ×X0. Further,
dimS0 < dimS. Then by Proposition 3.6, and induction on N ,

γ′ ∈ N1
S0

CHr(S0 ×X0;Q) ⊂ N1
S

CHr(S ×X;Q).
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As mentioned above, the same applies to γ, and we are done. �
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