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ABSTRACT. We construct a theory of de Rham epsilon factors. Given a smooth projective
variety X over a field of characteristic 0 and a DX -module M , we may consider the determinant
of de Rham cohomology det(RΓdR(X ,M )) as a graded super line. Let S be the singular support
of M , U an open in X , Y = X \U , and ν a 1-form on U ⊂ X such that ν(U)∩S = /0. Then we
show the existence of a canonically defined graded super line εν ,Y (M ) canonically isomorphic
to det(RΓdR(X ,M )). The key property is the local nature of the epsilon factor: it only depends
on the restriciton of M and ν to any open neighborhood of Y . Restricting to the case of curves
gives a theory of epsilon factors for curves previously defined by Beilinson, Bloch, Deligne, and
Esnault.

1. INTRODUCTION

Let X be a smooth variety over a field k of characteristic zero. A complex M of holonomic
DX -modules gives rise to a homotopy point [M ] of the K-theory spectrum Kh(DX) of holo-
nomic DX -modules. If X is projective, then we also get a homotopy point [RΓdR(X ,M )]
of the K-theory spectrum K(k). The structure morphism X → Spec(k) induces a morphism
of spectra Kh(DX)→ K(k). The determinant construction induces a morphism on the corre-
sponding fundamental groupoids Π(Kh(DX))→Π(K(k)). The latter groupoid is just the Picard
groupoid of Z-graded lines on k. Furthermore, after passing to determinants, the homotopy
point [RΓdR(X ,M )] gives rise to the object det(RΓdR(X ,M )) of Π(K(k)). The corresponding
element of K0(k) is just the Euler characteristic of M .
In this article we give a micro-local description of the homotopy point [RΓdR(X ,M )]. Let
S = SS(M ) denote the singular support of M contained in the cotangent bundle T ∗X . Given
a closed subvariety Y ⊂ X and a 1-form ν on X \Y taking values in the complement of S,
we construct a natural homotopy point Eν ,Y (M ) of K(k). The homotopy point Eν ,Y (M ) has
local nature and is determined by restrictions of M and ν on any open neighborhood of Y .
There is also a natural identification of the homotopy points Eν ,Y (M ) and [det(RΓdR(X ,M )].
Passing to determinants gives a graded line εν ,Y (M ) := det(Eν ,Y (M ). If Y is a disjoint union
of finitely many Yα ’s then we have [RΓdR(X ,M )] = ∑Eν ,Yα

(M ). Applying the determinant to
this formula gives det(RΓdR(X ,M )) =⊗αεν ,Yα

(M ).
The construction of E -factors follows from a micro-local K-theoretic animation of the charac-
teristic cycle CC(M ) of M . It follows form the the work of Quillen ([Qui73]) that there is a
morphism of spectra K(DX)→ K(T ∗X). We construct a lifting of this morphism to K-theory
with supports in S. More precisely, let KS(DX) denote the K-theory spectrum of perfect com-
plexes of DX -modules with support in S and KS(T ∗X) the K-theory of perfect complexes on T ∗X

1



2 DEEPAM PATEL

with support in S. Then we construct a natural homotopy morphism grS : KS(DX)→ KS(T ∗X).
If M has singular support in S, then we get a natural homotopy point grS([M ]) of KS(T ∗X).
The induced morphism gr : K0,S(DX)→ K0,S(T ∗X) is given by sending M to the associated
graded with respect to some good filtration. The image in the Chow groups is precisely CC(M ).
Therefore, we may view the homotopy point grS([M ]) as a micro-local K-theoretic animation
of CC(M ). On the other hand, intersecting CC(M ) with the zero section T ∗X X gives the Euler
characterisrtic of M . One has the classical Dubson–Kashiwara formula:

χ(X ,M ) = 〈CC(M ),T ∗X X〉.
If we restrict the homotopy point grS([M ]) to the zero section and apply RΓ, then this identifies
with the homotopy point RΓdR(X ,M ). In particular, we get a K-theoretic animation of the
Dubson–Kashiwara formula.
The idea that such an ε-factorization of det(RΓ) could exist comes from number theory. If X is a
smooth curve over a finite field of characteristic p > 0, and F an etale constructible sheaf, then
a precise factorization format for the determinant of the Frobenius action on the cohomology
of F was conjectured by Deligne ([Del73]) and proven by Laumon ([Lau87]).1 On the other
hand, it is still an open question if there is a geometric ε-factorization in the l-adic case which
would give rise to the classical ε-factorization by passing to traces of Frobenius.2 There does
not exist, even in the classical sense, an ε-factorizaion format in the higher dimensional l-adic
case.
In the case of curves, Deligne ([Del84]) gave a construction of the geometric ε-factorization
in the de Rham setting. These were reinvented in [BBE02], where the ε-factors were further
endowed with an ε-connection. Beilinson ([Bei09]) showed that these de Rham ε-factors have
much richer structure. In particular, they form an ε-factorization theory. We refer the reader
to ([Bei09]) for the definition. The key property is that, in addition to the global factorization
fomat, the ε-factors come equipped with an additional local factorization structure. Beilinson
shows that such local factorization structures are fairly rigid in a certain precise sense ([Bei09]).
When restricted to curves, our ε-factors also give rise to an ε-factorization theory in the sense of
Beilinson. When combined with the rigidity mentioned above, this should allow us to identify
our de Rahm epsilon factors with the previous ones (the details will appear elsewhere). There-
fore, we may view the constructions of this article as a generalization of the previous theory to
the higher dimensional case.
A geometric factorization format in the Betti setting (where X is a real analytic variety and M is
a constructible complex) was constructed by Beilinson ([Bei07]). In fact, Beilinson constructs
the ε-factorization format more generally at the level of homotopy points. The constructions
of ([Bei07]) are the main motivation for the constructions of this paper. In particular, the idea
that one could directly microlocalize on the K-theory spectrum and, consequently, obtain a

1Delinge, in fact, proved the conjecture for compatible systems. The general case is proved by Laumon[Lau87]
2In the l-adic situation, since the classical ε-factors depend on an additive character of the base field, the

geometric theory will lie in an appropriate gerbe rather than be a super graded line. Furthermore, the Frobenius
trace function should only give the classical counterpart when F has virtual rank zero. See [Bei09] for more
details on this point.



DE RHAM E -FACTORS 3

factorization of the determinant line is due to Beilinson. The results of this paper are an attempt
to obtain an (algebraic) de Rham version of this story. It is remarkable that such a factorization
exists, given the highly transcendental nature of the Betti constructions.
In analogy to the l-adic situation, Deligne envisoned an ε-factorization format for the deter-
minant of the period matrix on a curve. This format was recently constructed by Beilinson
([Bei09]). Given that one now has a geomeric theory of ε-factors in both the Betti and de Rham
situations, a natural question is whether one can give a geometric ε-format for the determinant
of the period matrix of higher dimensional varieties. We refer the reader to section 3.4 for a
precise formulation.
The results of this article were obtained as a part of the author’s thesis ([Pat08]).There we used
the sheaf of microdifferential operators to microlocalize; here we have chosen to use filtered
DX -modules instead. The use of filtered DX -modules allows us to work globally and therefore
avoids delicate patching arguments with sheaves of K-theory spectra. We expect that the filtered
DX -modules approach will allow us to compare the construction here with the Betti situation.
Now we give a brief outline of the paper. In Section 2, we recall various preliminaries on K-
theory spectra and their homotopy points. The material in this section is standard. In Section
3, we give a construction of de Rham ε-factors and prove various functoriality properties. In
Section 4, we specialize our results to the case of curves. The last section explains the pas-
sage between homotopy points of spectra and the corresponding determinant lines. The results
of this section are well known to the experts , and are included here for the reader’s convenience.

Acknowlegements I would like to thank my thesis advisors Professor Madhav Nori and Pro-
fessor Alexander Beilinson for all that they have taught me over the years. I would like to
especially thank Professor Beilinson for suggesting this thesis problem and teaching me about
epsilon factors. I would also like to thank Professor Peter May for various discussions on the
theory of spectra. Part of this work was written while visiting the University of Munster. The
author would like to thank Professor Christopher Deninger and the University of Munster for
their hospitality.

2. PRELIMINARIES ON K-THEORY SPECTRA

In this section, we recall some basic facts about K-theory spectra. We begin by recalling stan-
dard facts about the category of simplicial spectra. Most of this material is standard, and is
included here for the convenience of the reader. In particular, we discuss the notion of homo-
topy points and homotopy morphisms of spectra. In the last sub-section, we recall some basic
constructions from K-theory and their relation to determinants.

2.1. Simplicial Spectra and homotopy morphisms. In this section, we review some basic
facts and constructions about the category of simplicial spectra (as in [BF78]). We closely
follow the presentation of Beilinson ([Bei07]). Recall that a spectrum is a sequence of pointed
simplicial sets (Pn)n≥0 together with structure maps σn : S1∧Pn→ Pn+1, where S1 denotes the
one sphere. We denote by S the category of spectra. The category S comes equipped with a
simplicial structure. Given a simplicial set K, we can define a spectrum K∧P whose i-th space
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is given by K ∧Pi = K+ ∧Pi with the obvious structure maps. Here K+ is the simplicial set
given by K disjoint union a base point. This gives rise to the functor K∧· : S →S which has
a natural right adjoint given by P→ PK . Then for two spectra P,Q one can define a simplicial
set Map(P,Q) whose n-simplices are given by:

Map(P,Q)(n) = HomS (P,Q∆n) = HomS (∆n∧P,Q).

Given a (pointed) simplicial set K, we denote by |K| its geometric realization. Then the ho-
motopy groups of a spectrum P are defined by πi(P) = lim

→
πi+n(|Pn|) for all i ∈ Z; here the

limit is taken over the maps induced by the structure maps. A morphism of spectra is a weak
equivalence if it induces an isomorphism on the corresponding homotopy groups. A morphism
f : P→ Q is a cofibration if the induced maps P0→ Q0 and Pn∪S1∧Pn−1

(S1∧Qn−1)→ Qn are
inclusions. The above notions of weak equivalence and cofibration give S the structure of a
stable and proper simplicial model category (see [BF78], [Hir03]). The fibrations are then given
by the morphisms satisfying the right lifting property with respect to acyclic cofibrations (i.e.
morphisms which are both a weak equivalence and a cofibration). The category of spectra has
an initial and terminal object. A spectrum is fibrant if the natural morphism to the terminal
object is a fibration and it is cofibrant if the natural map from the initial object is a cofibration.
Finally, the category of spectra has functorial fibrant-cofibrant replacements.
The homotopy category of S is denoted by Ho(S ). By definition, this is the localization of S
with respect to the weak equivalences. It follows from the general theory of model categories
that for fibrant-cofibrant objects HomHo(S )(P,Q) = π0(Map(P,Q)). A weak equivalence of
spectra P→ Q can be inverted as a morphism in the homotopy category. But, in general such a
morphism cannot be inverted as a morphism of spectra. To remedy this situation, one must use
the more general notion of a homotopy morphism of spectra. A homotopy morphism P→ Q
consists of a contractible simplicial set K and a genuine morphism of spectra f : K∧P→Q. We
refer to K as the base of the homotopy morphism, and by abuse of notation we shall denote the
homotopy morphism by f : P→ Q. Given two homotopy morphisms f ,g with bases K f ,Kg, an
identification of f and g is a homotopy morphism h with base Kh together with morphisms K f →
Kh← Kg such that f ,g are the respective pullbacks of h. One can define the composition of two
homotopy morphisms f : P→Q and g : Q→ R as the composition Kg∧K f ∧P→ Kg∧Q→ R.
A homotopy morphism from a sphere spectrum to a given spectrum P will be referred to as a
homotopy point of P. If f and g are identified, then they induce the same maps on homotopy
groups.
We now recall the construction of the homotopy inverse of a morphism. Let P,Q be fibrant-
cofibrant spectra and f : P→ Q a weak equivalence of spectra. Then, a right homotopy inverse
to f is a pair (gr,hr), where gr is a morphism Q→ P and hr is a homotopy ∆1∧Q→Q between
f gr and IdQ. Dually, one can define the notion of left homotopy inverses. One has analogs
of these definitions for homotopy morphisms. Recall that in a model category a morphism be-
tween fibrant-cofibrant objects is a weak equivalence if and only if it is a homotopy equivalence.
Furthermore, if it is a simplicial model category then the notion of left/right homotopy is the
same as that of simplicial homotopy: Two morphisms of spectra f ,g : A→ B are homotopic if
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there is a h : ∆1 ∧P→ Q such that the composition ∆0∧P
i0∧Id

//
∆1∧P

h
// Q is f and the

composition ∆0∧P
i1∧Id

//
∆1∧P

h
// Q is g. Here i0 and i1 are the face maps corresponding

to the vertices 0 and 1. In particular, the above notion of right homotopy inverse is consistent
with the general model category definition. The following lemma shows that any weak equiv-
alence between fibrant-cofibrant spectra can be canonically inverted as a homotopy morphism;
an outline of the construction is given in [Bei07]. The proof given here works in the general
setting of proper closed simplicial model categories. In this article, we shall be interested in
constructing various micro-localization maps between K-theory spectra. During the course of
these constructions (see section 3), we will often need to invert weak equivalences of K-theory
spectra. The following lemma will allows us to do this in a canonical way.

Lemma 2.1.1. Let f : P→ Q be a weak equivalence of fibrant-cofibrant objects. Then there
exists a canonical right homotopy inverse gr and left homotopy inverse gl . Furthermore, there
is a natural identification of gr with gl .

Proof. Since P, Q are fibrant-cofibrant, it follows that Map(P,Q) , Map(∆1∧Q,Q), and Map(Q,Q)
are all fibrant. Now consider the pull-back square:

Map(∆1∧Q,Q)Id //

��

Map(∆1∧Q,Q)

��

Id // Map(Q,Q).

Here the bottom horizontal consists of the inclusion of the vertex corresponding to the identity,

and the right vertical is the map induced by the face map ∆0
i1

//
∆1 . Since the right vertical

arrow is an acyclic fibration, it follows that the left vertical arrow is also an acyclic fibration; in
particular, the pull-back is contractible. Consider also the pullback:

Kr //

��

Map(∆1∧Q,Q)Id

��

Map(Q,P) // Map(Q,Q).

Here, the right vertical is induced by the face map i0. The lower horizontal is induced by
f : P→Q. Since P,Q are fibrant-cofibrant and f is a weak equivalence, it follows that the bottom
horizontal is a weak equivalence. Furthermore, the right vertical is a fibration. To see this, note
that Map(∆1∧Q,Q) = Map(∆1,Map(Q,Q)), and therefore the pull back is just the path space
of Map(Q,Q). Since the category of simplicial sets is a proper model category, it follows that
the pull back of a weak equivalence along a fibration is a weak equivalence. In particular, the
top horizontal is also a weak equivalence. Therefore, Kr is a contractible simplicial set. Its
vertices correspond to pairs (gr,hr) where gr : Q→ P is a morphism and hr is a homotopy
between f gr and the Id : Q→ Q. Furthermore, the canonical map Map(Q,P)∧Q→ P induces
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a canonical homotopy morphism g̃r : Kr ∧Q→ P. By construction, this is a right inverse to f .
The composition f g̃r : Kr∧Q→Q sends a vertex (gr,hr,q) to f gr(q). This is homotopic to the
identity via the map h̃r : ∆1∧Kr∧Q→Q which, on vertices, sends (i,gr,hr,q) to hr(i,q). At the
level of simplicial sets, h̃r is induced by the evaluation map Map(∆1∧Q,Q)∧(∆1∧Q)→Q. We
can also construct in a similar manner a left homotopy inverse (gl,Kl). Consider the following
pullback diagram:

Map(∆1∧P,P)Id //

��

Map(∆1∧P,P)

��

Id // Map(P,P).

Here, the right vertical is induced as before by the face map at the vertex corresponding to 1.
Just as before, all the corners are fibrant and the left vertical is a weak equivalence. We can
form the following pull-back as before:

Kl //

��

Map(∆1∧P,P)Id

��

Map(Q,P) // Map(P,P).

The bottom horizontal is induced by pre-composing with f , and the right vertical is induced by
the face map at the vertex corresponding to 0. Again, the corners are all fibrant, the right vertical
is a fibration and the top horizontal is a weak equivalence. This gives a canonically defined
left homotopy inverse g̃l : Kl ∧Q→ P. Finally, we identify these two homotopy morphisms.
Consider, the following pull-back square:

H1 //

��

Map(∆1∧Q,P)

��

Map(∆1∧Q,P) // Map(Q,P).

Here, the right vertical and bottom horizontal are induced by i0 : ∆0→ ∆1. In particular, both
of these arrows are acyclic fibrations. Therefore, all the arrows in the diagram are acyclic
fibrations. Note that the vertices of H1 are pairs of homotopies (h1,h2) which are the same at 0.
Consider the face maps i[0,1], i[0,2] : ∆1→ ∆2 corresponding to the inclusion of the edges [0,1]
and [0,2]. These induce maps i[0,1], i[0,2] : Map(∆2∧Q,P)→Map(∆1∧Q,P) which are acyclic
fibrations. This follows from the fact that the inclusion of the faces are acyclic cofibrations.
Since these maps agree when restricted to the 0-th vertex, we get a map f : Map(∆2∧Q,P)→
H1. Furthermore, the resulting morphism is an acyclic fibration. Finally, consider the morphism
p : Kl ×Kr → H1 which on vertices sends (gl,hl,gr,hr) to (hlgr,glhr). We get the pull-back
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diagram:

H //

��

Map(∆2∧Q,P)

��

Kl×Kr // H1.

Since the right vertical is an acyclic fibration, it follows that so is the left vertical. In particular,
H is contractible. Note that H is the simplicial set with vertices given by (gr,hr,gl,hl, h̃) where
(gr,hr,gl,hl) are left and right homotopy inverses as before and h̃ : ∆2 ∧Q→ P. The map h̃
is given by gl f gr at the vertex 0, gr at the vertex 1, and gl at the vertex 2. Furthermore, it is
given by hlgr along the [0,1] edge and glhr along the [0,2] edge. We have a canonical homotopy
morphism ψ : ∆2∧H ∧Q→ P which on vertices sends (i,gr,hr,gl,hl, h̃,q) to h̃(i,q). We shall
use ψ to identify the homotopy morphisms g̃r and g̃l . To do this, it is enough to identify each
of these with ψ . First, consider the homotopy morphism η : ∆0∧H ∧Q→ P which on vertices
is given by sending (i,gr,hr,gl,hl, h̃,q) to gr(q). The inclusion of ∆0→ ∆2 given by sending 0
to 1 gives an identification of η with ψ . On the other hand, the projection H → Kr gives and
identification of η and g̃r. A similar argument allows one to identify g̃l and ψ . �

Remark 2.1.2. Note that the composition of gr or gl with f induces the identity maps on the
homotopy groups.

Suppose P is a fibrant-cofibrant spectrum. Then K ∧P is also cofibrant. It follows from the
lemma that any homotopy morphism between fibrant-cofibrant spectra which is a weak equiva-
lence can also be inverted as a homotopy morphism.
One also has a notion of homotopy sum for spectra. Let I be a finite set. Then one has a
canonical morphism of spectra eI : ∨IP→ PI induced by the identity on the (i, i)-th component
and trivial on other components. For k ∈ I, let ik : P→∨IP denote the inclusion onto the k-th
component.

Lemma 2.1.3. Suppose P is a fibrant-cofibrant spectrum. Then one has a canonical homotopy
morphism (the sum) ΣI : PI → P such that the composition ΣIeIik : P→ P is given by idP.

Proof. Consider the morphism fI ∈Map(∨IP,P) induced by identity from P→ P. Let E(P)I
be the pull-back defined by the square:

E(P)I //

��

Map(PI,P)

��

fI // Map(∨IP,P).

The right arrow is induced by the morphism eI . Since P is fibrant-cofibrant, so are ∨IP and PI .
Furthermore, eI is an acyclic cofibration. It follows from the theory of proper closed simplicial
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model categories that the right vertical map is an acyclic fibration of simplicial sets. In particu-
lar, the left vertical arrow is also a weak equivalence, and hence E(P)I is contractible. Further-
more, the canonical morphism Map(PI,P)∧PI→P, induces a morphism E(P)I∧PI→P. Note
that by definition of the pull-back, the vertices of E(P)I are morphisms from PI → P which are
the identity when composed with each copy of P. The resulting homotopy morphism, denoted
by ΣI : PI → P, is the required construction.

�

We say that a square diagram of homotopy morphisms

P
f

//

g
��

Q

g′
��

R
f ′

// S

is commutative or commutes if the homotopy morphisms g′ f and g f ′ are identified as homotopy
morphisms.
Suppose one is given a diagram of fibrant-cofibrant spectra:

T

h
��

P
f

// Q
g

// R

where g◦h is homotopic to zero and the bottom row is a homotopy fiber sequence. Then, given
a choice of homotopy of g ◦ h to zero, one has a homotopy morphism T → P 1 such that the
following diagram commutes (up to homotopy):

T

����
��

��
��

h
��

P
f

// Q
g

// R

.

Here we can replace all the morphisms by homotopy morphisms.

Remark 2.1.4. We refer the reader to ([Hir03]) for details on homotopy fiber/cofiber sequences
of spectra.

2.2. K-theory spectra. Let E be a small exact category. Then Quillen’s K-theory construction
gives a functor from the category of small exact categories to the category of spectra. Since
S has functorial fibrant-cofibrant replacements, we assume from now on that the associated
spectrum K(E ) is fibrant-cofibrant. More generally, if E is an essentially small exact category
then we can associate to it a spectrum K(E ) by taking the K-theory spectrum of an associated
small model. An equivalence of small exact categories gives a weak equivalence of the cor-
responding spectra; therefore, two different small models can be canonically identified in the

1In general, such a lifting is not unique. However, once a choice of homotopy is fixed, any two can be identified.
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world of homotopy morphisms. In particular, we can associate to any essentially small exact
category a K-theory spectrum, and any exact functor between essentially small exact categories
gives rise to a homotopy morphism of the corresponding K-theory spectra. If F1 : E1→ E2 and
F2 : E2 → E3 are exact functors, then the homotopy morphisms K(F2) ◦K(F1) and K(F2 ◦F1)
are canonically identified. From now on we assume that all our categories are essentially small.
More generally, Waldhausen associates to any category with cofibrations and weak equivalences
a corresponding K-theory spectrum. Furthermore, an exact functor between Waldhausen cat-
egories induces a homotopy morphism between the corresponding spectra. In this article, we
shall mostly be interested in complicial bi-Waldhausen categories and complicial exact functors;
we refer the reader to ([TT90]) for details. If E is an exact category, then Cb(E ) is a complicial
bi-Waldhausen category with weak equivalences. We will recall briefly this structure. Again,
we refer the reader to ([TT90]) for details. Any exact category E can be embedded into an
abelian category A such that a sequence in E is exact if and only if the corresponding sequence
in A is exact. Then we have a fully faithful embedding Cb(E )→Cb(A ). This gives Cb(E ) the
structure of a complicial bi-Waldhausen category. The cofibrations are given by the degree-wise
strict monomorphisms. The weak equivalences are morphisms which are quasi-isomorphisms
in Cb(A ). A fundamental result of Thomason–Trobaugh–Waldhausen–Gillet ([TT90]) shows
that the inclusion of E into Cb(E ) as degree zero morphisms induces a canonical weak equiva-
lence of spectra K(E )→ K(Cb(E )). Here the right side is the Waldhausen K-theory spectrum
associated to K(Cb(E )). This allows us to canonically identify various Quillen and Waldhausen
K-theory spectra. Similar statements apply to the categories C−(E ) and C+(E ). In the follow-
ing, we shall always assume all our spectra to be fibrant-cofibrant. In particular, the machinery
from the previous section will allow us to invert various weak equivalences canonically as ho-
motopy morphisms.

Remark 2.2.1. There is another structure of a bi-complicial Waldhausen category on Cb(E )
commonly used in the literature. The weak equivalences are the same as above, but the cofibra-
tions are degree-wise split monomorphisms whose quotient lies in Cb(E ). Let E1 denote Cb(E )
with this structure of bi-complicial Waldhausen category and E2 denote Cb(E ) with the structure
of bi-complicial Waldhausen category described in the previous paragraph. Then the inclusion
E1→ E2 is a complicial exact functor such that the induced morphism K(E1)→K(E2) is a weak
equivalence (1.11.7, [TT90]). In this article, we shall always use the complicial structure given
in the previous paragraph.

Given a Waldhausen category A , we denote by A tri the associated homotopy category given
by inverting the weak equivalences; note that this is a triangulated category. If F : A → B
is a complicial exact functor between two complicial bi-Waldhausen categories such that the
induced map on homotopy categories is an equivalence of categories, then the induced map on
K-theory spectra is a weak equivalence. We will often consider derived functors which are a
priori only defined on A tri. Usually, these can be lifted to functors on certain full complicial
bi-Waldhausen subcategories C ⊂A such that the inclusion induces an equivalence on the as-
sociated triangulated categories. Using the formalism of homotopy morphisms, we can lift the
derived functor to a morphism of K-theory spectra. A typical application is the following: Let
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X be a proper scheme over k, and let K(X) be the K-theory spectrum of perfect complexes on
X . Since X is proper, we can define RΓ : Db

perf(X)→ Db
perf(k). The above approach allows us

to lift this to a homotopy morphism RΓ : K(X)→ K(k), where K(X) is the K-theory spectrum
of category of perfect complexes on X and similarly for K(k). First, we may consider the (full)
complicial bi-Waldhausen sub-category of flasque perfect complexes. On this subcategory, RΓ

is represented by Γ. Furthermore, the properness assumption implies that Γ preserves perfect-
ness. We refer to the article by Thomason–Trobaugh ([TT90]) for more details.
In the following, we will sometimes consider Waldhausen categories W with two different
notions of weak equivalences given by subsets ν ⊂ ω of morphisms in W . We will use the
notation νW and ωW to distinguish between the two induced Waldhausen category structures.

2.3. Determinants. In this section, we briefly recall the determinant philosophy at the spec-
trum level; we refer the reader to section 5 for details. Given a Waldhausen category A , any
object F in A gives rises to a homotopy point [F ] of the associated K-theory spectrum K(A ).
In the situation of an exact category E , this construction gives a canonical homotopy point [F ]
of K(Cb(E )) for all F ∈ Ob(Cb(E )). Furthermore, to any [0,1]-connected Ω-spectrum K we
can associate a canonical Picard groupoid denoted by Π(K); any homotopy point of K gives
rise to an object of the associated Picard groupoid. For any spectrum K, we can functori-
ally associate a [0,1] connected Ω-spectrum denoted K[0,1] with a morphism K → K[0,1]. In
the case of K(Cb(E )), we can apply the above to get an object Det(x) ∈ Π(K(Cb(E ))[0,1]) for
any homotopy point x of K(Cb(E )). Furthermore, the homotopy point construction induces
a determinant functor Det : (Cb(E ),w)→ Π(K(Cb(E ))[0,1]), which is a universal determinant
functor in the sense of Knudsen ([Knu02]). This functor factors through the derived category
(Db(E ),qis)→ Π(K(Cb(E ))[0,1]) as a tensor functor. Here Db(E ) has tensor structure com-
ing from the additive structure. Furthermore, an identification of homotopy points gives rise
to an isomorphism of the corresponding determinants. If x and y are two homotopy points of
K(Cb(E )), then one has a canonical isomorphism ·xy : Det(x)⊗Det(y)→Det(x+y); here x+y
is the homotopy sum described in 2.1.

Remark 2.3.1. If F and G are objects in a Waldhausen category A , then the homotopy point
[F⊕G] of the direct sum of F and G in A is identified with the homotopy sum [F ]+ [G]. See
5.15 for details.

Let PicZ(k) denote the Picard groupoid of Z-graded lines on k, whose objects are ordered pairs
of one dimensional k-vector spaces and an integer n, the degree of the line. Then there is a
canonical determinant functor det : Cb(k)→ PicZ(k). If V is a vector space in degree zero, this
functor sends V to the usual determinant line graded by the dimension of the vector space. In
the particular case of a scheme X proper over k, the determinant of RΓ(X ,F) is just the usual
determinant of cohomology graded by the Euler characteristic. If S is a scheme, then we can
define the Picard groupoid PicZ(S) of Z-graded lines on S. The grading will be a Z-valued
locally constant function on S. Then, as in the case of a field, one has a determinant functor
detS : Cb

per f (S)→ PicZ(S). By universality, there is a canonical morphism of Picard groupoids
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DetS : Π(K(S))→ PicZ(S) such that the following diagram commutes:

Cb
per f (S)

detS

%%KKKKKKKKK

Det
// Π(K(S))

DetS
��

PicZ(S).

In particular, if A and B are perfect complexes, then the image of DetS(·[A][B]) is just the usual
isomorphism detS(A)⊗detS(B)→ detS(A⊕B).
Suppose we have an exact functor of exact categories E1→ E2. Then we get an induced map
F : K(E1)→ K(E2). If A ∈ Ob(E1), then there is a canonical identification of the homotopy
points F([A]) and [F(A)]. Furthermore, an identification of homotopy points gives rise to an
isomorphism of the corresponding determinants.

3. THE EPSILON FACTORIZATION

Let X be a smooth variety over a field k of characteristic zero. For a closed subset S of T ∗X ,
let KS(DX) denote the K-theory spectrum of DX -modules with singular support contained in
S. Similarly, let KS(T ∗X) denote the K-theory spectrum of perfect complexes on T ∗X with
cohomology supported in S. The construction of de Rham epsilon factors proceeds in two
steps: First, we construct a microlocalization morphism KS(DX)→ KS(T ∗X). Then, we further
localize with respect to a non-vanishing 1-form ν to get the required epsilon factorizations.
In the first subsection we construct the microlocalization morphism. The second section is
devoted to the construction of epsilon factors. The third section is devoted to the study of
various functoriality properties of epsilon factors. The last two subsections briefly discuss the
connection with Betti epsilon factors and the Dubson–Kashiwara formula. For the Betti analogs
of the results in this section see [Bei07].

3.1. Preliminaries on filtered DX -modules. We begin by reviewing some preliminaries on
filtered DX -modules (see [Lau83]). Recall that the sheaf of differential operators DX comes
with an increasing filtration by OX submodules:

OX = D0 ⊂D1 ⊂ ·· · ⊂DX , DiD j = Di+ j,
⋃

i Di = DX

where each Di is a locally free OX -module. A filtered DX -module consists of a pair (M ,F·)
where M is a DX -module and F· is an increasing Z-filtration of M by OX -submodules such
that Fi = 0 for i << 0,

⋃
i Fi = M , and DiF j ⊂Fi+ j. A filtered DX -module is quasi-coherent

if each Fi is a quasi-coherent OX -module. It follows that M is a quasi-coherent DX -module.
Let MFqcoh(DX) denote the category of quasi-coherent filtered DX -modules where the mor-
phisms preserve the filtration. If F· is a filtration on M , then we can define a new filtration
F [k] where F [k]i = Fi+k. We denote by DX [ j] the filtered DX -module DX with the standard
filtration shifted by j. In general, if M is a filtered DX -module, we denote by M [ j] the filtered
DX -module with same underlying module, but with filtration shifted by j.
Let gr·(DX) denote the associated graded sheaf and MGqcoh(gr·(DX)) the corresponding cate-
gory of quasi-coherent graded modules. We have a natural functor gr· : MFqcoh(DX)→MGqcoh(gr·(DX)).



12 DEEPAM PATEL

We denote by gr(DX) the same sheaf as before, but where we forget the grading. Let Mqcoh(gr(DX))
denote the corresponding category of quasi-coherent gr(DX)-modules. Forgetting the grad-
ing gives a natural functor gr : MFqcoh(DX)→Mqcoh(gr(DX)). The categories Mqcoh(gr(DX))
and MGqcoh(gr·(DX)) are abelian categories. The category MFqcoh(DX) has all kernels, coker-
nels, images, and coimages. For example, the kernel of a morphism f : (M ,F·)→ (N ,G·)
is the DX -module ker( f ) with the filtration induced from F·. We say that a sequence 0→
(M ,F·)→ (N ,G·)→ (P,H·)→ 0 in MFqcoh(DX) is exact if , for all i, 0→ Fi → Gi →
Hi → 0 is an exact sequence of OX -modules. This is equivalent to requiring that uv = 0 and
0→ gr(M )→ gr(N )→ gr(P)→ 0 be exact as a sequence of gr(DX)-modules. The above
notion of exact sequences makes MFqcoh(DX) into an exact category. We shall also consider
the category MFFqcoh(DX) of doubly filtered quasi-coherent DX -modules. The objects are
triples (M ,F 1

M ,·,F
2
M ,·), where M is a DX -module and F ∗

M ,· are filtrations by quasi-coherent
OX -submodules as above. We will usually drop the subscript M and denote it simply by
(M ,F 1

· ,F
2
· ) or (M ,F 1,F 2) if no confusion arises. The category MFFqcoh(DX) is an exact

category where a sequence is exact iff it is exact at the i-th filtration level for both filtrations. If
M is a doubly filtered DX -module, then M [ j,k] is the doubly filtered D-module with the same
underlying filtration, but with the first filtration shifted by j and second filtration shifted by k.
Given an exact category E , let C∗(E ) (for ∗ = +,−,b) denote the corresponding category
of chain complexes and D∗(E ) the associated derived category. We will use the notation
CF∗(DX),CFF∗(DX), and CG∗(gr·(DX)) for the categories of chain complexes associated to
the categories above; similarly, DF∗(DX),DFF∗(DX), and DG∗(gr·(DX)) will denote the cor-
responding derived categories. Recall that CF∗(DX) and CFF∗(DX), are both complicial bi-
Waldhausen categories (see section 2.2). Let ωCF and ωCFF denote the weak equivalences in
CF∗(DX) and CFF∗(DX). If
(M ,F 1,F 2) is a doubly filtered complex, then H i(M ), with filtration induced by F1 and F2,
is a doubly filtered DX -module. We will use the notation H i(M ,F 1,F 2) to denote this doubly
filtered DX -module. Similar notation will be used for filtered DX -modules.
We will say that an object of MF(DX) is free of finite type if it is isomorphic to an object of
the form ⊕r

α=1DX [− jα ] for some jα ∈ Z and r ≥ 0. An object of MF(DX) is a projective
filtered DX -module if it is locally a direct summand of a free module of finite rank. We have
analogous definitions of free and projective doubly filtered modules where ⊕r

α=1DX [− jα ] is
replaced by⊕r

α=1DX [− jα ,−kα ]. One can now define various categories of perfect and coherent
complexes ([Lau83], [[SG71]). In particular, we have the categories CFb

perf(DX), CFFb
perf(DX),

DFb
perf(DX), and DFFb

perf(DX) of perfect complexes. An object in the respective category is
a complex which is locally quasi-isomorphic to a bounded complex each of whose terms is
projective (i.e. a strictly perfect complex). If (M ,F 1,F 2) is perfect, then each Hn(grF k(M ))
is a coherent gr(DX)-module (4.4.3, [Lau83]).
Any exact category E can be embedded in an abelian category A such that a sequence in
E is exact if and only if the corresponding sequence in A is exact. If E is an exact cate-
gory, then Cb(E ) comes equipped with a homotopy pushout, induced from the one in Cb(A ).
Let f : M· → N· and g : M· → P· be morphisms in Cb(E ). Then set (N· ∪h

M· P
·)n = Nn ⊕
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Mn+1⊕Pn with the differential given by d(n,m, p) = (dN(n)+ f (m),−dM(m),dP(p)−g(m)).
If the induced morphism M· → N· ⊕ P· is a strict monomorphism, then the canonical map
from the homotopy pushout to the pushout is a quasi-isomorphism. This follows from the
analogous statement for abelian categories (applied to A ). There is a dual notion of homo-
topy pullback. Given f : M· → P· and g : N· → P·, let (M·×h

P· N
·)k = Mk⊕Pk−1⊕Nk with

d(m, p,n) = (dM(m),−dP(p) + f (m)− g(n),dN(n)). If the induced map M·⊕N· → P· is a
strict epimorphism, then the canonical map from the puhout to the homotopy pushout is a quasi-
isomorphism. In particular, both CFFb

perf(DX) and CFb
perf(DX) come equipped with homotopy

pushouts and pullbacks.

Lemma 3.1.1. The category of perfect filtered complexes CFb
perf(DX) (resp. CFFb

perf(DX)) is
a full subcategory of CFb(DX) (resp. CFFb(DX)) which is closed under extensions, fiber
products along strict epimorphisms, and push-outs along strict monomorphisms. In particu-
lar, CFb

perf(DX) and CFFb
perf(DX) are complicial bi-Walhausen categories.

Proof. The statement for CFFb
perf(DX) follows from that for CFb

perf(DX). Recall that the com-
plicial Waldhausen structure on CFb(DX) comes from an embedding into C(A ). Furthermore,
CFb

perf(DX) is a full exact subcategory of CFb(DX). The cofibrations and weak-equivalences
in CFb

perf(DX) are defined to be morphisms which are cofibrations or weak-equivalences in
CFb(DX). This will give a bi-complicial Waldhausen structure on CFb

perf(DX) if it is closed un-
der extensions, fiber products along strict epimorphisms, and push-outs under strict monomor-
phisms (1.2.11, [TT90]). The closure under extensions is proved in ([Lau83]). We show closure
under fiber products along strict epimorphisms. Consider a diagram of objects in CFb

perf(DX):

(M ,F )

��

(N ,F )
g

// (P,F )

where g is a strict epimorphism. Since g is a strict epimorphism, the homotopy pullback is quasi-
isomorphic to the pullback, so it is enough to prove the analogous statement for the homotopy
pullback. As the statement is local, we may assume all our complexes are quasi-isomorphic
to strictly perfect complexes; in fact, since X is smooth, we can even assume this globally. In
any case, the homotopy pullback of the corresponding strictly perfect complexes will be quasi-
isomorphic to the initial one. On the other hand, it is clear from the construction of homotopy
pullback that the homotopy pullback of strictly perfect complexes is strictly perfect. A similar
argument works for the homotopy pushout. �

Let KFF(DX) and KF(DX) denote the K-theory spectra of CFFb
perf(DX) and CFb

perf(DX). We
also have the K-theory spectrum K(DX) of the category of perfect complexes of DX -modules.
We have two functors F1,F2 : CFFb

perf(DX)→ CFb
perf(DX) where F i sends (M ,F 1,F 2) to
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(M ,F i). We also have the forgetful functor ω : CFb
perf(DX)→Cb

perf(DX). These are all com-
plicial exact functors of complicial bi-Waldhausen categories. In particular, we have the induced
homotopy morphisms of spectra F∗ : KFF(DX)→ KF(DX) and ω : KF(DX)→ K(DX).

Theorem 3.1.2. The square of spectra

KFF(DX) F1
//

F2

��

KF(DX)

ω

��

KF(DX) ω
// K(DX)

is a homotopy pushout square.

The theorem is proved in two parts. First, the fibers of the two horizontal rows are computed via
Waldhausen’s localization theorem (1.8.2, [TT90]). Then these fibers are canonically identified.
We begin by setting up some notation. Let ω1 denote the morphisms f : (M ·,F 1,F 2)
→ (N ·,F 1,F 2) in CFFb

perf(DX) such that the induced morphism grF 1( f ) : grF 1(M ·)→
grF 1(N ·) is a weak equivalence; we define ω2 analogously using F 2 instead. Let ν denote
the morphisms in CFb

perf(DX) which induce a weak equivalence on the underlying complex.
Then νCFb

perf(DX) is also a Waldhausen category. Finally, one has the Waldhausen category
ωCFFCFFb

perf(DX)ω1 consisting of the full subcategory of ω1 acyclic objects in CFFb
perf(DX)

with weak equivalences given by ωCFF .

Lemma 3.1.3. The Waldhausen category ω1CFFb
perf(DX) satisfies the saturation and extension

axioms.

Proof. Let f : (M ·,F 1
· ,F

2
· )→ (N ·,F 1

· ,F
2
· ) and g : (N ·,F 1

· ,F
2
· )→ (P·,F 1

· ,F
2
· ) be mor-

phisms in ω1CFFb
perf(DX). The saturation axiom states that if any two of f ,g,g ◦ f are in ω1

then so is the third. By definition, this amounts to checking that if two of grF 1( f ),grF 1(g),
and grF 1(g ◦ f ) are quasi-isomorphisms of complexes of sheaves of gr(DX)-modules, then so
is the third. Since grF 1(g◦ f ) = grF 1(g)◦grF 1( f ), the result follows from the corresponding
statement for complexes of sheaves of gr(DX)-modules.
For the extension axiom, we must show that for a diagram of cofibration sequences:

(M ·,F 1
· ,F

2
· ) // //

a
��

(N ·,F 1
· ,F

2
· ) // //

b
��

(¶·,F 1
· ,F

2
· )

c
��

(M ′·,F 1
· ,F

2
· ) // // (N ′·,F 1

· ,F
2
· ) // // (¶′·,F 1

· ,F
2
· ),

if a and c are in ω1 then so is b. The image of the above diagram of cofibration sequences under
F1 is also a cofibration sequence. Furthermore, f ∈ ω1 if and only if F1( f ) ∈ ωCF . The result
follows since ωCFCFb

perf(DX) is a complicial bi-Waldhausen category.
�
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Before proceeding, we briefly recall the notion of a cylinder functor on a Waldhausen category
A (see ([TT90], 1.3) for details). Let Cat(1,A ) denote the category of morphisms in A . A
cylinder functor on A is a functor T : Cat(1,A )→A , together with three natural transforma-
tions satisfying the following properties. By definition, T assigns an object T f ∈ A to each
morphism f : A→ B and a morphism T (a,b) : T f → T f ′ to each commutative diagram:

A
f

//

a
��

B

b
��

A′
f ′

// B′

The natural transformations are maps j1 : A→ T f , j2 : B→ T f , and p : T f → B such that
p j1 = f , p j2 = 1 and such that the following diagram commutes:

A∪B
j1∪ j2

//

a∪b
��

T f
p

//

T (a,b)
��

B

b
��

A′∪B′
j1∪ j2

// T f ′
p

// B′

The above data is also required to satisfy the following conditions:
(1) j1∪ j2 : A∪B→ T f is a cofibration.
(2) If a and b are weak equivalences, then T (a,b) is a weak equivalence.
(3) If a and b are cofibrations, then T (a,b) and T f ∪A∪B (A′∪B′)→ T f ′ is a cofibration.
(4) T (0→ A) = A with p = j2 = Id.
A cylinder functor satisfying the following additional axiom is said to satisfy the cylinder axiom:
(5) (Cylinder axiom) For all f , p : T f → B is a weak equivalence.
Suppose A is an abelian category. We have seen that Cb(A ) is a complicial bi-Waldhausen
category. For any f : A→ B ∈ Cb(A ), let T f = A∪h

A B denote the homotopy pushout of f
and Id : A→ A. Let j1 and j2 denote the canonical inclusions. Finally, let p be given by
p(a,a′,b) = f a+b. It is shown in ([TT90], 1.3.5) that this defines a cylinder functor satisfying
the cylinder axiom on Cb(A ). In particular, the category Cb(gr(DX)) has a canonically defined
cylinder functor. We shall denote this cylinder functor by T gr. Since Cb

perf(gr(DX)) is closed
under homotopy pushouts in Cb(gr(DX)), T gr induces a cylinder functor satisfying the cylinder
axiom on Cb

perf(gr(DX)).

Lemma 3.1.4. CFFb
perf(DX) has a cylinder functor which satisfies the cylinder axiom.

Proof. Recall, we have already seen that homotopy pushouts exist in CFFb
perf(DX). For a given

morphism f : A→ B in CFFb
perf(DX) , we let T f = A∪h

A B denote the homotopy pushout of
f and Id : A→ A. The maps j1 and j2 are the canonical inclusions. The map p is given by
p(a,a′,b) = f a + b. One can check directly that this construction satisfies the axioms above.
For example, since cofibrations are degree-wise admissible monomorphisms, (1) follows from
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the definition of the homotopy pushout. Alternatively, one can deduce properties (1)-(5) from
analogous statements in Cb

perf(gr(DX)).
One has grF i(T f ) is isomorphic to T gr(grF i( f )). Furthermore, a and b are weak-equivalences
if and only if grF i(a) and grF i(b) are weak equivalences. Similarly, for cofibrations (i.e. admis-
sible monomorphisms). Now (2), (4), and (5) follow directly from the analogous statements in
Cb

perf(gr(DX)). For (3) it is enough to show that T f ∪A∪B (A′∪B′)→ T f ′ is a cofibration since
clearly T f → T f ∪A∪B (A′∪B′) is a cofibration. Therefore if the first map is a cofibration, then
so is the composition, which is precisely T (a,b) : T f → T f ′. On the other hand, grF i(M∪P N)
is isomorphic to grF i(M)∪grFi(P) grF i(N) for all N,M,P ∈CFFb

perf(DX). Therefore, the claim
follows from the analogous claim in Cb

perf(gr(DX)).
�

Corollary 3.1.5. The following sequence is a homotopy cofiber sequence:

K(ωCFFCFFb
perf(DX)ω1

CFF )→ KFF(DX)→ K(ω1CFFb
perf(DX)).

Proof. Given the previous two lemmas, this is a direct consequence of the Localization Theorem
(1.8.2, [TT90]). �

Lemma 3.1.6. (1) νCFb
perf(DX) satisfies the saturation and extension axioms.

(2) CFb
perf(DX) has a cylinder functor given by the homotopy pushout and satisfies the cylin-

der axiom.

Proof. The proof is similar to that of Lemmas 3.3 and 3.4. �

Corollary 3.1.7. The following sequence is a homotopy cofiber sequence:

K(ωCFCFb
perf(DX)ν)→ KF(DX)→ K(νCFb

perf(DX)).

The forgetful functor F2 induces a functor F2 : ωCFFCFFb(DX)ω1 →
ωCFCFb

perf(DX)ν . To see this, note that if (M ·,F 1
· ,F

2
· ) is ω1-acyclic, then the underlying

complex of DX -modules is also acyclic. Furthermore, F preserves cofibrations, pushouts, and
weak equivalences. It follows that F2 is a complicial exact functor, and we have an induced
homotopy morphism F2 : K(ωCFFCFFb(DX)ω1

)→ K(ωCFCFb
perf(DX)ν).

Proposition 3.1.8. F2 is a weak equivalence of spectra.

Proof. We apply the Approximation Theorem (1.9.1, [TT90]). First, note that both
ωCFFCFFb(DX)ω1

and ωCFCFb
perf(DX)ν satisfy the saturation axioms. A morphism f ∈ωCFFCFFb(DX)ω1

is a weak equivalence if and only if grF 1 and grF 2 are weak equivalences. Since objects
of ωCFFCFFb(DX)ω1

are grF 1-acyclic, grF 1 is automatically a weak equivalence. It fol-
lows that f is a weak equivalence iff F2( f ) is a weak equivalence. Finally, to apply the
Approximation Theorem we must verify the following statement: Given any (M ·,F 1

· ,F
2
· ) ∈

ωCFFCFFb(DX)ω1
and x : (M ·,F 2

· )→ (N ·,F 2
· )∈ωCFCFb

perf(DX)ν , there exists (M ′·,F 1
· ,F

2
· )∈
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ωCFFCFFb(DX)ω1
, a morphism a : (M ·,F 1

· ,F
2
· )→ (M ′·,F 1

· ,F
2
· ), and a weak equivalence

x̃ : (M ′·,F 2
· )→ (N ·,F 2

· ) in ωCFCFb
perf(DX)ν such that x = x̃ ◦F2(a). Note that, for each i,

there exists a ki such that F 1
M i, j = 0 for all j ≤ ki. Furthermore, since M is a bounded com-

plex, we can find a k which works for all i. Fix such a k. Let M ′ = N and F 2
M ′ = F 2

N .
Let F 1

N be the filtration such that F 1
N ,i = 0 if i ≤ k and F 1

N ,i = N · if i > k. Since N is
acyclic, grF1(N ) is also acyclic. It follows that (M ′·,F 1

· ,F
2
· ) with F 1

M ′ = F 1
N is an object

of ωCFFCFFb(DX)ω1
. Furthermore, we have x(F 1

M )⊂F 1
M ′ . This gives the required mapping

a and x̃ = Id. �

Let G : ω1CFFb
perf(DX)→ ωCFCFb

perf(DX) denote the functor which sends
(M ,F 1

· ,F
2
· ) to (M ,F 1

· ). Then G is a complicial exact functor and induces a morphism of
spectra: G : K(ω1CFFb

perf(DX))→ KF(DX).

Proposition 3.1.9. G is a weak equivalence of spectra.

Proof. According to Theorem 1.9.8 of ([TT90]) it’s enough to show that the resulting map on
the associated triangulated categories is an equivalence of categories. Let D̃FFb

perf(DX) and
DFb

perf(DX) denote the corresponding triangulated categories. First, note that essential surjec-
tivity is clear. Given perfect filtered (M ,F ), we can lift it to (M ,F ,F ). Therefore, we
must show that the resulting functor on homotopy categories is fully-faithful. To show that the
functor is full, we must show that the following map is surjective:

HomD̃FFb
perf(DX )((M ,F 1,F 2),(N ,F 1,F 2))→ HomDFb

perf(DX )((M ,F 1),(N ,F 1))

By the following lemma, any perfect filtered complex is quasi-isomorphic to a strictly perfect
complex. In particular, we can assume (M ,F 1,F 2) and (N ,F 1,F 2) are strictly perfect.
Now, by part (3) of the following lemma:

HomDFb
perf(DX )((M ,F 1),(N ,F 1)) = HomKFb

stp(DX )/KFb, /0
stp (DX )((M ,F 1)),(N ,F 1))

Now, morphisms φ on the right can be represented by a diagram

(M ,F 1) (P,F 1)
f

oo
g

// (N ,F 1)

where f is a quasi-isomorphism and (P,F 1) is strictly perfect. In particular, all the F i are
good filtrations. It follows that we can lift f to a morphism (M ,F 1,F 2[k])← (P,F 1,F 1).
To see this note that f (F 1

P) is a good filtration on the image and so is the restriction of F 2
M .

In particular, for each i, there exists ki, such that f (F 1
P i, j) ⊂F 2

M i,ki+ j. Since our complexes
are bounded we can find one k which works for all i. Then f (F 1

P) ⊂ F 2
M [k]. A similar

statement holds for g. Now if k ≥ 0, then the identity induces a morphism (M ,F 1,F 2)→
(M ,F 1,F 2[k]). If k < 0, the identity induces a morphism (M ,F 1,F 2[k])→ (M ,F 1,F 2).
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In either case, both morphisms are weak-equivalences in ω1CFFb
perf(DX) and, therefore, iso-

morphisms in D̃FFb
perf(DX). In particular, we can lift φ to a morphism in D̃FFb

perf(DX). To
show that the functor is faithful, we must show that the following is injective:

HomD̃FFb
perf(DX )((M ,F 1,F 2),(N ,F 1,F 2))→ HomDFb

perf(DX )((M ,F 1),(N ,F 1))

Again, we may assume that both (M ,F 1,F 2) and (N ,F 1,F 2) are strictly perfect. It is
enough to show that if f : (M ,F 1,F 2)→ (N ,F 1,F 2) is a morphism such that G( f ) is null
homotopic then there is a weak equivalence a : (N ,F 1,F 2)→ (N ′,F 1,F 2) such that the
composition a ◦ f is null homotopic. Let h denote the homotopy of G( f ) to zero. Although h
is not a morphism of complexes, the above argument still applies to show that there is a k such
that h(F 2

M n)⊂F 2
N n−1[k] for all n. If k ≤ 0, the h lifts to a homotopy of f . On the other hand,

if k > 0 the identity gives a weak equivalence a : (N ,F 1,F 2)→ (N ,F 1,F 2[k]). Then h
give a homotopy of a◦ f with zero.

�

Lemma 3.1.10. (1) Let M be a bounded perfect complex of DX -modules. Then there is a
bounded strictly perfect complex of DX -modules P and a quasi-isomorphism of P →
M .

(2) Let (M ,F ) be a bounded perfect complex of filtered DX -modules. Then there ex-
ists a bounded strictly perfect complex (P,F ) and a quasi-isomorphism (P,F )→
(M ,F ).

(3) Let KFb
st p(DX) denote the homotopy category of bounded strictly perfect filtered com-

plexes of DX -modules, and KFb, /0
st p (DX) the full (thick) subcategory of acyclic complexes.

Then the canonical functor KFb
stp(DX)/KFb,

stp(DX)→ DFb
perf(DX) is an equivalence of

categories.
(4) Similar statements hold for doubly filtered perfect complexes of DX -modules.

Proof. (1) It is a standard result that any DX -module M has a finite resolution by locally pro-
jective DX -modules ([HTT08], 1.4.20). Furthermore, if M is a coherent DX -module then we
can find a resolution by finite rank locally projectives. Now one can extend this result to a
perfect complex of DX -modules just as in the case of usual perfect complexes of OX -modules
([[SG71], Expose 2). For example, one can apply ([TT90], Lemma 1.9.5) where A ,D ,C in loc.
cit. are the categories of DX -modules, locally projective DX -modules, and perfect complexes.
The above statement guarantees that hypothesis (1.9.5.1) of ([TT90], Lemma 1.9.5) holds. The
other hypotheses required to apply the lemma hold trivially since in our care D → A is fully
faithful. In particular we can apply the conclusion of ([TT90], 1.9.5) exactly as in the proof of
([TT90], 2.3.1) where the analogous result for OX -modules is proved.
(2) Suppose every coherent filtered DX -module (M ,F ) has a finite resolution by locally pro-
jective filtered DX -modules. Then we can again proceed as in (1) and apply ([TT90], 1.9.5),
where A will denote the ambient abelian category of the exact category of quasi-coherent fil-
tered DX -modules. The existence of filtered resolutions as above, and the explicit description
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of A given in ([Lau83]) show that the hypothesis of loc. cit. is satisfied. So suppose (M ,F )
is a coherent filtered DX -module. Then F is a good filtration. In particular, there exists an
i0 such that for all j and i ≥ i0: D jFi(M ) = Fi+ j(M ). Since M is a coherent DX -module,
one can find a coherent OX -submodule M0 which generates M as a DX -module ([HTT08],
1.4.17). Furthermore, since Fi(M ) are all coherent OX -modules, we can assume (by making
M0 larger) Fi0(M )⊂M0. Consider the filtered OX -module (M0,F ). The filtration is the one
induced from M ; in particular, it is finite since M0 is coherent. By construction, one has an
epimorphism of filtered DX -modules: DX ⊗OX (M0,F )→ (M ,F ). The filtration on the left
term is the tensor product filtration (DX with the canonical filtration). Now, we can also find a
surjection P→M0 where P is a locally free OX module. Pulling back the filtration from M0
gives a surjection (P,F )→ (M0,F ) of filtered OX -modules. Furthermore, we may assume
that the P is filtered by locally free O-submodules. We prove this by induction on the length n
of the filtration on P . By induction and after possibly re-indexing or shifting, we can assume
we have a filtered OX -module

0 ( FP,1 ⊂ ·· · ⊂FP,n+1 ( P

where FP,i is locally free for 1 ≤ i ≤ n and P is locally free. Let F ′ → FP,n+1 denote
a surjection from a locally free OX -module. Pulling back the filtration on FP,n+1 gives a
filtration on F ′. This is of length n so that again we may assume by induction that these are
locally free. Now let P ′ = F ′⊕P . This has a natural filtration of length n+1 by locally free
subsheaves, and there is a natural surjection of filtered OX -modules (P ′,F )→ (P,F ). So
we assume now that we have a surjection (P,F )→ (M0,F ), where the filtration on P is
by locally free OX -modules. Then the resulting DX -module DX ⊗OX (P,F ) is a locally free
filtered DX -modules. Locally the filtration gives a flag (not necessarily complete) of Or

X where
r is the rank. The corresponding filtration on the induced DX -module is locally just shifts of the
canonical filtration. Finally, the composition DX⊗OX (P,F )→DX⊗OX (M0,F )→ (M ,F )
has the required property. Continuing in this way gives a resolution by filtered modules

0→ (L2d,F )→ ··· → (L0,F )→ (M ,F )→ 0

where (Li,F ) is a locally free filtered DX -module for i < 2d and d = dim(X). But, over an
affine open U , the global dimension (as a filtered ring) of DX(U) is less than or equal to 2d. It
follows that (L2d,F ) is locally projective. This gives the desired resolution.
(3) This is a direct consequence of (2).
(4) The proof is the same as that for (2). If F 1 and F 2 are good filtrations on M , i10 and i20 as
in the proof of (2), then choose M0 such that it contains both F 1

i10
(M ) and F 2

i20
(M ) �

Let Φ : νCFb
perf(DX)→ ωCb

perf(DX) be the forgetful functor. Since Φ is a complicial exact
functor, we have an induced morphism Φ : K(νCFb

perf(DX))→ K(DX) of spectra.

Lemma 3.1.11. If P is a strictly perfect complex of DX -modules, then it can be lifted to a
strictly perfect complex of filtered DX -modules.
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Proof. We may assume that the Pk = 0 for k /∈ [0,n]. We will proceed by induction on n. If n =
0, then the claim follows from the standard fact that any coherent DX -module admits a global
good filtration. By induction, we can assume that the complex [· · · → 0→P0→ ···Pn−1→
0→ ··· ] lifts to a perfect complex [· · · → 0→ (P0,FP0)→ ·· ·(Pn−1,FPn−1)→ 0→ ·· · ].
Choose a good filtration F ′

Pn on Pn, since FPn−1 and F ′
Pn are good filtrations, there exists

an integer l such that for all r, dn−1(FPn−1,r)⊂F ′
Pn,r+l . Replacing F ′

Pn by F ′
Pn[l] gives the

desired lift. �

Proposition 3.1.12. Φ is a weak equivalence of spectra.

Proof. According to Theorem 1.9.8 of ([TT90]) it’s enough to show that the resulting map on the
associated triangulated categories is an equivalence of categories; let Dperf(DX) and D̃Fperf(DX)
denote these triangulated categories. First, a morphism f is in ν if and only if Φ( f ) is a weak
equivalence. It follows from the previous lemma that if P is a strictly perfect complex of
D-modules then we can lift it to an object of CFb

perf(DX). Since any M ∈Cb
perf(DX) is quasi-

isomorphic to a strictly perfect complex, it follows that the functor is essentially surjective.
We first show that the functor is full. Let (M ,F ) and (N ,F ) be two objects of CFb

perf(DX)
and x : M →N a morphism in Dperf(DX). Again, we can assume that (M ,F ) and (N ,F )
are strictly perfect. Now we can proceed as in the proof of Proposition 3.9. An element x ∈
HomDperf(DX )(M ,N ) can be represented by a diagram:

M P
g

//

f
oo N

where P is strictly perfect and f is a weak equivalence. Now lift P to a strictly perfect filtered
complex (P,F ). Then we can lift the above diagram to a diagram:

(M ,F [k]) (P,F )
g

//

f
oo (N ,F [l])

for some k and l. On the other hand, (M ,F [k]) is isomorphic to (M ,F ) in D̃Fperf(DX)
and similarly for (N ,F [l]). This shows that the functor on homotopy categories is full. To
prove faithfulness, one can proceed as in the proof of 3.9. Again it is enough to show that if
f : (M ,F )→ (N ,F ) is a morphism of complexes such that Φ( f ) is null homotopic then there
is weak equivalence a : (N ,F )→ (N ′,F ) such that a ◦ f is null homotopic. As before, we
may assume that everything is strictly perfect. If h is a homotopy of Φ( f ) with zero, then the is a
k such that h(FM n)⊂FN n−1[k] for all n. If k≤ 0, then h lifts to a null homotopy of f . If k > 0,
we can compose f with the weak equivalence induced by the identity (N ,F )→ (N ,F [k]).

�
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Proof. (Theorem 3.2) From Corollary 3.5 and Corollary 3.7 we have the following commutative
diagram where the rows are homotopy cofiber sequences:

K(ωCFFCFFb
perf(DX)ω1

CFF ) //

��

KFF(DX) //

��

K(ω1
CFFCFFb

perf(DX))

��

K(ωCFCFb
perf(DX)ν) // KF(DX) // K(νCFb

perf(DX)).

It follows that the square on the right is a homotopy pushout square. This gives the following
commutative diagram where the left square is a homotopy pushout square:

KFF(DX) //

��

K(ω1
CFFCFFb

perf(DX))

��

// KF(DX)

��

KF(DX) // K(νCFb
perf(DX)) // K(DX).

Since the two horizontal arrows on the right are weak equivalences, the right square is also a
homotopy pushout, and It follows that the outside square is also a homotopy pushout. On the
other hand, the composition of the two top arrows is just the map F1, and the bottom row is ω .
Since the left vertical is F2, the result follows. �

We will now construct a homotopy commutative square:

KFF(DX) //

��

KF(DX)

��

KF(DX) // K(gr(DX)).

The universal property of the homotopy pushout will then give a morphism K(DX)→K(gr(DX)).
Furthermore, there is a natural map from K(gr(DX)) to K(T ∗X). Finally, the above methods
will then give the desired microlocal version of this morphism: KS(DX)→ KS(T ∗X). We begin
with some preliminaries on K-theory.
Taking complexes with coherent cohomology instead of perfect complexes, we can also de-
fine the categories CFFb

coh(DX) and CFb
coh(DX). We then have the corresponding G-theories,

GFF(DX) , GF(DX) and G(DX). We could also consider the categories of (locally) projective
filtered DX -modules PFF(DX) and PF(DX), and similarly the categories of coherent filtered
DX -modules MFFcoh(DX) and MFcoh(DX). Let KFF

′
(DX) = K(PFF(DX)) and similarly for

KF
′
(DX) and K

′
(DX). Also, let GFF

′
(DX) = K(MFFcoh(DX)) and similarly for GF

′
(DX) and

G′(DX).
Since X is smooth, the canonical morphisms K′(DX)→G′(DX) is a weak equivalence. This can
be proven as in the case of usual K-theory of schemes ([TT90], 3.2.1). Any exact category E
can be considered a complicial bi-Waldhausen category ([TT90], 1.2.12). One fixes an ambient
abelian category A for E as before, and considers the complexes C. in C(A ) such that C0 ∈ E
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and Ci = 0 for all other i. The cofibrations are level-wise admissible monomorphisms and the
weak equivalences are quasi-isomorphisms (for such complexes they are just isomorphisms in
E ). Now we have already seen that K(E ) is the same as K(Cb(E )) (section 2.2). Therefore, it is
enough to show that K(Cb(P(DX)))→ K(Cb(Coh(DX))) is a weak equivalence, where P(DX)
and Coh(DX) are the categories of projective and coherent DX -modules respectively. This is an
equivalence if the corresponding map on homotopy categories is an equivalence. Since P(DX)
is a full subcategory of Coh(DX), by ([TT90], 1.9.7) it is enough to show that the functor on
homotopy categories is essentially surjective. But, this can be proved as in Lemma 3.10. In
particular, any bounded complex of coherent DX -modules is quasi-isomorphic to a bounded
complex of projective DX -modules. A similar argument shows that KFF

′
(DX)→ GFF ′(DX)

and KF ′(DX)→ GF ′(DX) are weak equivalences.
Furthermore, the canonical map K′(DX)→ K(DX) is also a weak equivalence. Again, it is
enough to show that the map on homotopy categories is a weak equivalence. It is clearly
fully-faithful, and essential surjectivity follows from Lemma 3.10. A similar argument shows
that the canonical maps KFF ′(DX)→ KFF(DX) and KF ′(DX)→ KF(DX) are weak equiva-
lences. This result will be used in the proof of the Theorem 3.13 below. Note, it also true that
GFF ′(DX)→GFF(DX) is a weak equivalence and similarly for GF ′(DX) and G′(DX), but we
will not use this below.
Recall that DX comes with a canonical good filtration with associated graded denoted by gr(DX)
. Let Cb

qcoh(gr(DX)) denote the category of bounded chain complexes of quasi-coherent gr(DX)-
modules (see section 2.2 for a description of the Waldhausen category structure). We will say
that a complex in Cb

qcoh(gr(DX)) is perfect if it is locally quasi-isomorphic to a bounded complex
all of whose components are projective of finite type. Let Cb

perf(gr(DX)) denote the category of
perfect complexes of gr(DX)-modules and K(gr(DX)) = K(Cb

perf(gr(DX))). Recall (section
2.2), we take the Waldhausen structure where the weak equivalences are quasi-isomorphisms
and cofibrations are degree-wise admissible monomorphisms. We have induced complicial
exact functors gr : CFb

perf(DX)→ Cb
perf(gr(DX)) and gr1,gr2 : CFFb

perf(DX)→ Cb
perf(gr(DX))

of complicial bi-Waldhausen categories. In particular, we have induced homotopy morphisms
of the corresponding K-theory spectra. As in the previous paragraph, we have the K-theory
spectrum K′(gr(DX)) and a weak equivalence K′(gr(DX))→ K(gr(DX)) ([TT90], 3.2.1).
Let M be a coherent DX -module. Suppose (F 1,F 2) are two good filtrations on M . Then
there exist integers r and s such that F 1

k ⊂F 2
k+r ⊂F 1

k+s. We will say that F 1 and F 2 are
(r,s)-adjacent if there exist r and s as above. If we can take r = 0 and s = 1, then we will
say that F 1 and F 2 are adjacent. Let PFF(r,s)(DX) denote the category of doubly filtered
projective modules such that the corresponding filtrations are (r,s)-adjacent. Since every exact
sequence of doubly filtered projective modules splits locally (with filtration), this is a full exact
subcategory of PFF(DX). Denote the corresponding K-theory spectrum by KFF(r,s)(DX). Let
I denote the set Z×Z with ordering (r,s) ≤ (r′,s′) iff r ≤ r′, s ≤ s′, and r′− r ≤ s′− s. For
each pair (r,s) ≤ (r′,s′) we have the embedding PFF(r,s)(DX) ⊂ PFF(r′,s′)(DX). The colimit
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over the directed set I of the PFF(r,s)(DX) is PFF(DX). It follows that the canonical morphism
of spectra colimI KFF(r,s)(DX)→ KFF ′(DX) is a weak equivalence. 2

Theorem 3.1.13. One has a canonical homotopy commutative diagram:

KFF(DX) //

��

KF(DX)

��

KF(DX) // K(gr(DX)).

In particular, gr1 and gr2 are canonically identified as homotopy morphisms.

Proof. It is enough to prove that the following diagram is commutative:

KFF ′(DX) //

��

KF ′(DX)

��

KF ′(DX) // G′(gr(DX)).

Recall that G′(gr(DX)) is the K-theory of the category of coherent gr(DX)-modules; there is
a canonical weak equivalence G′(gr(DX))→ K(gr(DX)). We must construct a homotopy be-
tween grF1 : KFF ′(DX)→ G′(gr(DX)) and grF2 : KFF ′(DX)→ G′(gr(DX)). By the remarks
of the previous paragraph, it is enough to construct homotopies between grF1 : KFF(r,s)(DX)→
G′(gr(DX)) and grF2 : KFF(r,s)(DX) → G′(gr(DX)) which are compatible under the inclu-
sion mappings for varying (r,s). If (M ,F 1,F 2) is an object of PFF(r,s)(DX), let H(n) =
F 1 +F 2[n], which is a good filtration on M . Let grH(n) : KFF(r,s)(DX)→ G′(gr(DX)) be the
morphism induced by sending (M ,F 1,F 2) to grH(n)(M ). If n = r, then H(n) = F2[n]. It
follows that grH(n) is canonically homotopic to grF2[n]. On the other hand, grF2[n] = grF2 , so
for n = r, grH(n) is homotopic to grF2 . If n = r− s, then H(n) = F1; therefore, it suffices to
construct a homotopy between grH(n) and grH(n+1). Note that H(n) and H(n + 1) are adjacent
filtrations. It follows that we have exact sequences of coherent gr(DX)-modules:

0→⊕H(n+1)k/H(n)k→ grH(n)(M )→⊕H(n)k/H(n+1)k−1→ 0

0→⊕H(n)k/H(n+1)k−1→ grH(n+1)(M )→⊕H(n+1)k/H(n)k→ 0.

If we let f (n)((M ,F 1,F 2)) = H(n+1)k/H(n)k and g(n)((M ,F 1,F 2)) =
H(n)k/H(n+1)k−1, then the above exact sequences give us with canonical homotopies grH(n)

∼=
f (n)+g(n)∼= grH(n+1). Combining everything gives the required homotopy between grF1 and
grF2 on KFF(r,s)(DX). It is clear that the construction is compatible for varying (r,s), and the
result follows.

�
2In the case at hand, the transition maps are all inclusions and therefore the colimit is just the union over all

(r,s) in PFF(DX ). In particular, it is just PFF(DX ). The weak equivalence of the resulting spectra follows as in
([TT90], see proof of 3.20.1).
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If Y is a scheme, we let K(Y ) denote the K-theory spectrum of perfect complexes on X . Let
π : T ∗X → X denote the canonical projection map; then we have a canonical isomorphism
π∗OT ∗X ∼= gr(DX). Since π is affine, we have an equivalence of categories: π∗ : Cb

perf(OT ∗X)→
Cb

perf(gr(DX)). It follows that we have an equivalence of K-theory spectra: π∗ : K(T ∗X)→
K(gr(DX)).

Corollary 3.1.14. There is a canonical morphism of spectra gr : K(DX)→ K(T ∗X).

Proof. By the universal property of homotopy pushout and Theorem 3.13, we have a canonical
morphism K(DX)→ K(gr(DX)). Composing this with π−1

∗ : K(gr(DX))→ K(T ∗X) gives the
required morphism. �

We will now construct a microlocal version of the morphism in the previous corollary. For
a perfect complex M ∈ Cb

perf(DX), let SS(M ) ⊂ T ∗X denote the singular support of M in
the cotangent bundle. The singular support of a bounded complex of DX modules is defined
to be the union of the singular supports of the corresponding homology sheaves. Given S ⊂
T ∗X , let CFFb

perf,S(DX) ⊂ CFFb
perf(DX) denote the full subcategory of complexes such that

the underlying complex has singular support contained in S. These are again complicial bi-
Walhausen categories with the induced structure. Similar statements apply to CFb

perf,S(DX) and
Cb

perf,S(DX). Let KFFS(DX), KFS(DX) and KS(DX) denote the corresponding K-theory spectra;
similarly, let KS(gr(DX)) denote the K-theory spectrum of perfect complexes such that the
corresponding complex on T ∗X has support in S. The support of a perfect complex on T ∗X is
defined to be the union of the supports of the corresponding homology sheaves.

Theorem 3.1.15. (1): The following diagram is a homotopy pushout:

KFFS(DX) //

��

KFS(DX)

��

KFS(DX) // KS(DX).

(2): There following diagram is commutative:

KFFS(DX) //

��

KFS(DX)

��

KFS(DX) // KS(gr(DX)).

Proof. The proof proceeds exactly as the proofs of Theorems 3.2 and 3.13. One needs only to
note that the singular support is independent of the choice of good filtrations and only depends
on the underlying perfect complexes. �

Corollary 3.1.16. There exists a canonical map grS : KS(DX)→ KS(T ∗X).

The following is a naturality property for the microlocalization as S varies.
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Proposition 3.1.17. If S⊂ S′ then one has a homotopy commutative diagram:

KS(DX)

��

// KS(T ∗X)

��

KS′(DX) // KS′(T ∗X).

Proof. Let g1 denote the composition KS(DX)→ KS(gr(DX))→ KS′(gr(DX)) and g2 denote
the composition KS(DX)→ KS′(DX))→ KS′(gr(DX)). Using the canonical equivalence π∗ :
KS′(T ∗X)→ KS′(gr(DX)), it is enough to show that g1 and g2 are canonically identified. Since
S⊂ S′, we have a canonical commutative diagram given by taking the associated graded:

KFFS(DX) //

��

KFS(DX)

��

KFS(DX) // KS′(gr(DX)).

The universal property of homotopy pushouts then gives a morphism f : KS(DX)→KS′(gr(DX)).
The morphisms KFS(DX)→KS′(gr(DX)) in the above diagram factor as KFS(DX)→KS(gr(DX))→
KS′(gr(DX)). It follows that the composition g1 is also a solution to the homotopy pushout
problem given by the above square. Another application of universal property of homotopy
pushouts gives a homotopy equivalence between f and g1. A similar argument shows that f is
also canonically identified with g2.

�

Corollary 3.1.18. The following diagram commutes: If S ⊂ T ∗X then one has a homotopy
commutative diagram:

K(DX) // K(T ∗X)

KS(DX)

OO

// KS(T ∗X)

OO

Proof. Apply the previous proposition with S′ = T ∗X . �

It follows directly from the construction that the induced morphism grS : KS,0(DX)
→ KS,0(T ∗X) on Grothendieck groups is given by sending a DX -module M to
grF (M ) where F is some good filtration on M . This morphism was previously constructed
by Laumon ([Lau83]). The above construction can be viewed as a lifting of this morphism to
the whole K-theory spectrum.

3.2. Construction of epsilon factors. Any perfect complex of DX -modules M with singular
support in S gives rise to a homotopy point [M ] of KS(DX). The results of the previous section
then give a microlocalized homotopy point grS([M ]) of KS(T ∗X). We shall now construct a
morphism, depending on the choice of a 1-form ν on U ⊂ X (M will be smooth off Y = X \U
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i.e. on U it will be a vector bundle with connection), from KS(T ∗X) to KY (X). This will then
give us the required epsilon factors. We begin with a lemma.

Lemma 3.2.1. Let ν be a 1-form on U = X \Y , with Y ⊂ X closed such that ν(X \Y )∩S = /0.
Let V = T ∗X \S. Then one has a commutative diagram:

K(V ) ν∗
// K(U)

K(T ∗X)

OO

(π∗)−1
// K(X)

OO

KS(T ∗X)

OO

// KY (X)

OO

Proof. The columns are just the usual localization sequences. The homotopy morphism ν∗

is just pullback by the given section. Furthermore, the middle horizontal is induced by the
structure map π : T ∗X → X . Since π ◦ ν = Id the top square commutes. Since both vertical
columns are homotopy cofiber sequences we get a map from KS(T ∗X)→ KY (X). �

Note that the morphism KS(T ∗X)→ KY (X) depends on ν ; we shall denote this morphism by
Eν . Denote the composition grS ◦ Eν by Eν ,Y . Now given a complex F ∈ Db

S(DX) we get a
homotopy point [F ] of KS(DX). Then, composing with Eν ,Y gives a homotopy point Eν ,Y (F )
of KY (X). This give us the required localization of the determinant of cohomology. We need to
show that our epsilon factor satisfies a global product formula. We recall the statement of the
global product formula.
Suppose f : X → Z is a proper morphism of smooth varieties. Then we have pushforward maps
R f∗ : Db

perf(DX)→ Db
perf(DZ). If X is projective, then we get RΓdr : Db

perf(DX)→ Db
perf(k). On

the other hand, we also have the usual pushforward RΓ : Db
perf(X)→Db

perf(k). These induce mor-
phisms of K-theory spectra RΓ : K(X)→K(k), RΓ : KY (X)→K(k), and RΓdr : K(DX)→K(k).
The global product formula states that the homotopy points [RΓdr(X ,M )] and [RΓ(Eν ,Y (M ))]
of K(k) are canonically identified.
In fact, the push forward functors exist at the filtered level ([Lau83]): Laumon’s construction
of filtered direct images also works for doubly filtered DX -modules. In particular, we have
functors R f∗ : DFFb

perf(DX)→ DFFb
perf(DX) and R f∗ : DFb

perf(DX)→ DFb
perf(DX), which are

furthermore compatible with the forgetful functors DFFb
perf(DX)

→ DFb
perf(DX)→ Db

perf(DX).
We prove a few preliminary lemmas in preparation for the proof of the global product formula.
First, we give another construction of the morphism gr : K(DX)→ K(T ∗X) due to Quillen. If
X is affine, then Quillen shows that the natural morphism K′(X)→K′(DX) given by sending an
OX -module M to the left DX -module DX ⊗OX M is a weak equivalence. These can be glued
to get an analogous weak equivalence in the non-affine case ([Hod89]). On the other hand, we
have a canonical weak equivalence K′(X)→ K′(T ∗X) given by pullback along the projection.
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Then, inverting the above homotopy morphism gives us a morphism grQ : K(DX)→ K(T ∗X).
Here we also use the identification of K′(DX) and K′(X) with K(X) and K(DX).

Remark 3.2.2. Note that the construction of Quillen does not give us a grS. This is the main
reason for the complicated constructions of the previous section. On the other hand, Quillen’s
theorem, which is a statement about positively filtered rings, can be generalized to Z-filtered
rings. This then leads to a construction of a grE : K(EX) → K(T ∗X \ X), where EX is the
sheaf of micro-local differential operators. The microlocal grE allows the construction of a grS
as before. This was the approach taken in the author’s thesis ([Pat08]). Unfortunately, with
this method, one has to work with affine opens and then glue together the resulting grE using
Mayer–Vietoris, and such gluings at the level of K-theory spectra require delicate arguments
with sheaves of K-theory spectra. Furthermore, whereas these methods do not generalize to
the analytic situation, the constructions using filtered DX -modules do generalize. We hope to
report on the analytic situation (and the connection with Betti epsilon factors) elsewhere. The
use of filtered DX -modules allows us to make arguments globally and avoid the use of sheaves
of spectra as well as the theory of microdifferential operators. It also makes various functoriality
properties (see subsections 3.4 and 3.5) easier to see.

Lemma 3.2.3. The homotopy morphisms grQ and gr are canonically identified.

Proof. Note that we have a commutative diagram:

KFF(DX) //

��

KF(DX)

��

KF(DX) // K(T ∗X).

The arrows KF(DX)→K(T ∗X) come from the composition KF(DX)→K(DX)→grQ
K(T ∗X).

It follows from the universal property of the homotopy pushout that gr and grQ canonically
identified. �

Lemma 3.2.4. Let X be a smooth projective variety over k. Then the composition

K(DX)
gr

// K(T ∗X)
(π∗)−1

// K(X) RΓ
// K(k)

is homotopic to RΓdr : K(DX)→ K(k).

Proof. By the previous lemma we may replace gr by grQ. Now grQ : K(DX)
→ K(T ∗X) was defined to be the composition

K(DX) // K(X) π∗
// K(T ∗(X).
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Therefore it is enough to see that the following diagram commutes:

K(DX) //

RΓdr

$$IIIIIIIII
K(X)

RΓ

��

K(k)

In fact, it is enough to show that the following diagram commutes:

K(X) //

RΓ

$$IIIIIIIII
K(DX)

RΓdr
��

K(k)

here the top arrow sends M to DX ⊗OX M . The result is now a standard fact from the theory
of DX modules at the level of derived functors and derived categories. �

Corollary 3.2.5. (Global Product Formula) With the notation as before, the homotopy points
[RΓdr(X ,M )] and [RΓ(Eν ,Y (M ))] are canonically identified.

Proof. By Lemma 3.18 and Corollary 3.17 we have a commutative diagram:

K(DX) // K(T ∗X) // K(X)

KS(DX) //

OO

KS(T ∗X) //

OO

KY (X)

OO

Our M gives a homotopy point of [M ] of KS(DX). By the previous lemma, composing with
the top row followed by RΓ : K(X)→ K(k) gives the homotopy point [RΓdr(X ,M )]. On the
other hand, the following diagram commutes:

K(X) RΓ
// K(k)

KY (X)

OO
RΓ

;;wwwwwwwww
.

Therefore, composition with the bottom row followed by RΓ : KY (X)→K(k), which is [RΓ(Eν ,Y (M ))],
is canonically identified with [RΓdr(X ,M )]. �

Let εν ,Y (M ) = det([RΓ(Eν ,Y (M ))]) be the corresponding element of PicZ(k). Passing to de-
terminants gives a canonical isomorphism ηdr,ν : det(RΓ(X ,M ))→ εν ,Y (M ); the former is by
definition the determinant of de Rham cohomology. Note that the epsilon factor has a local na-
ture in the sense that it only depends on the values of the form and M on an open neighborhood
of Y .

Lemma 3.2.6. Let G ,F ∈ Db
S(DX), and ν be as above. Suppose F |U ′ = G |U ′ for some open

U ′ ⊂ X such that Y ⊂U ′. Then Eν ,Y (F ) and Eν ,Y (G ) are canonically identified.
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Proof. First we can restrict everything to U ′. This gives rise to homotopy points
Eν ,Y (G |U ′) and Eν ,Y (F |U ′) of K(Y ). Furthermore, by the given hypothesis these two are
canonically identified. Therefore, it is enough to show that Eν ,Y (F ) is canonically identified
with Eν ,Y (F |U ′). This follows from the following commutative diagram:

KS(DX) //

��

KS(T ∗X) //

��

KY (X)

��

KSU ′ (DU ′) // KSU ′ (T
∗U ′) // KY (X).

Here SU = T ∗U ∩S; the left two vertical arrows are the natural restriction maps and the right is
the identity map. �

Lemma 3.2.7. Suppose ν = µ on an open neighborhood U ′ of Y . Then Eν ,Y (F ) and Eµ,Y (F )
are canonically identified.

Proof. The proof is similar to that of the previous lemma. �

Remark 3.2.8. (1) Since X is smooth, one can identify K(X) with G(X), where G(X) is the
K-theory of the abelian category of coherent sheaves on X . It follows from comparing with the
localization sequence for K-theory, that the fiber KY (X) of K(X)→ K(U) can be canonically
identified with G(Y ).
(2) It follows from the previous comment that if Y is the disjoint union of Yi then KY (X) =
∏KYi(X). In particular, one has homotopy points Eν ,Yi(F ) of K(Yi) and a canonical identifica-
tion Eν ,Y (F ) = ∑i Eν ,Yi(F ).
(3) If k′ is a finite extension of k, then εν ,Y (F )⊗k k′ = ενk′ ,Yk′ (Fk′).

3.3. Compatibility properties of epsilon factors. In this section we discuss the compatibility
of epsilon factors under pushforward and pullback.
Let f : X→Y be a smooth morphism of smooth varieties over k. Then one has pullback functors
L f ∗ : Db

perf(DY )→Db
perf(DX). These pullback functors can be lifted to the categories of filtered

DX -modules which are compatible with the forgetful functors. One has a commutative diagram:

T ∗X X×Y T ∗Y
ρ f

oo
prX

//

prT∗Y
��

X

f
��

T ∗Y
πY

// Y.

Here the arrow on the left is the natural one induced by f and the right commutative square
is cartesian. It is well known that for a complex of perfect DY modules M , SS(L f ∗(M )) ⊂
ρ f pr−1

T ∗Y (SS(M )); in fact, since f is smooth, the inclusion is an equality. For Y ′ closed in Y ,
let ν be a non-vanishing 1-form on Y \Y ′ such that ν(Y \Y ′)∩SS(M ) = /0. Suppose f is etale.
Then f ∗ν is a 1-form on X \ f−1(Y ′) such that f ∗ν(X \ f−1(Y ′))∩SS(L f ∗(M )) = /0.
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Proposition 3.3.1. Let X ,Y, f , and ν be as above. Furthermore, denote f−1(Y ′) by X ′. One
has a commutative diagram of spectra:

KS(DY )

L f ∗
��

ε
ν ,Y ′

// KY ′(Y )

f ∗

��

K
ρ f pr−1

T∗Y (S)(DX)
ε

ν ,X ′
// KX ′(X)

In particular, the two homotopy points [ f ∗(εν ,Y ′(M ))] and [εν ,X ′(L f ∗M ))] are canonically
identified.

Proof. In fact, in the situation of the proposition f ∗ is exact. Furthermore, the pullback of the
cotangent bundle of Y is isomorphic to the cotangent bundle of X . The diagram in question
factors as:

KS(DY )

L f ∗
��

// KS(T ∗Y ) //

��

KY ′(Y )

f ∗

��

K
ρ f pr−1

T∗Y (S)(DX) // KS′(T ∗X) // KX ′(X).

The arrow in the middle is given by pull-back to T ∗Y ×Y X followed by pushforward along the
natural isomorphism T ∗Y ×Y X → T ∗X . It is clear that the right square commutes. For the left
square, it is enough to show that the following square commutes:

KFS(DY ) //

��

KS(gr(DY ))

��

KFS′(DX) // KS′(gr(DX)).

The right vertical is given by pullback along f and pushing forward along the natural isomor-
phism f ∗(gr(DY ))→ gr(DX). The diagram commutes since, by construction of the filtered pull
back, gr( f ∗(M ,F ))∼= f ∗(grF (M )). �

Now we consider the behavior of epsilon factors under pushforward. In [Lau83], Laumon has
defined push forward maps

∫
f : DFb

perf(DX)→ DFb
perf(DY ) for proper morphisms f : X → Y .

The idea is to factor the morphism into a closed immersion followed by a smooth projection.

Lemma 3.3.2. One has a commutative diagram of spectra:

KF(DX)

gr
��

∫
f

// KF(DY )

gr
��

K(T ∗X) G
// K(T ∗Y ),

where G is induced by sending M to RprT ∗Y,∗ρ
!
f M[d f ]. Here d f is the relative dimension of f .
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Proof. This is just a restatement of Laumon (5.6.1, [Lau83]). There it is shown that the diagram
commutes at the level of derived categories. In fact, Laumon constructs a canonical morphism
at the level of complexes. The idea is to factor the given morphism into a closed immersion
followed by a smooth projection. For closed immersions, the pushforward is exact, while for
smooth morphisms, the pushforward can be defined canonically at the level of complexes using
the relative de Rham complex. In particular, we can define the pushforward functors at the
level of complexes. The same is true for G as long as we work with appropriate models for
the K-theory spectra. For smooth morphisms, ρ !

f is given by the usual pullback twisted by
the sheaf of relative differentials. So if we work with perfect complexes of flat modules, then
the two morphisms gr ◦

∫
f and G ◦ gr can be defined at the level of complexes. Furthermore,

there is a natural morphism of functors G◦gr→ gr◦
∫

f , which is an isomorphism on the derived
categories. There is also a canonical choice for such a factoring using the graph of f . Therefore,
we get a canonical identification of the corresponding homotopy morphisms. �

Remark 3.3.3. We could make the homotopy constructed in the previous lemma even “more”
canonical. The homotopy constructed in the proof depended on a certain factorization of f
into a closed morphism followed by a smooth morphism. On the other hand, it follows from
([Lau83]) that the homotopies constructed from two different factorizations are canonically
identified, and we could take the colimit over all such homotopies. Then we would even get
naturality for composition of proper maps f : X → Y and g : Y → Z. Another way to do this is
to compare the corresponding graphs and relate the resulting relative de Rham complexes; this
gives rise to a canonical morphism

∫
g◦ f →

∫
g ◦

∫
f on the level of complexes ([Lau83]).

The homotopy constructed in Lemma 3.28 is essentially a Riemann-Roch theorem for higher
K-theory of DX -modules; it is a lifting of Laumon’s construction from K0 to the whole K-
theory spectrum. We can now microlocalize to get a microlocal Riemann–Roch. Let S =
SS(M )⊂ T ∗X . Then SS(

∫
f (M ))⊂ prT ∗Y (ρ−1

f (S)) = S′. Therefore, the above lemma gives a
commutative diagram:

KFS(DX)

gr
��

∫
f

// KFS′(DY )

gr
��

KS(T ∗X) G
// KS′(T ∗Y ).

We need only check that if F is a perfect complex on T ∗X with support in S then Supp(G(F ))⊂
S′. More generally, let f : X → Y be a morphism of schemes. Let F be a quasi-coherent sheaf
on X with support in S⊂ X . If f is proper, then the support of f∗(F ) is contained in f (S). If F
is a quasi-coherent sheaf on Y with support S, then the support of f !(F ) is contained in f−1(S).
Let f : X → Y be a proper morphism with S and S′ as above. Let ν be a non-vanishing 1-form
on Y \Y ′ such that ν(Y \Y ′)∩S′ = /0 and f is etale. Then f ∗ν(X \X ′)∩S = /0.
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Corollary 3.3.4. Let X ,Y,X ′,Y ′ and ν be as before. Suppose that f is etale. One has a canoni-
cal commutative diagram:

KS(DX) //

ε f∗ν ,X ′
��

KS′(DY )

ε
ν ,Y ′

��

KX ′(X)
R f∗

// KY ′(Y ).

Proof. It is enough to check the commutativity of the following diagram:

KS(T ∗X) G
//

��

KS′(T ∗Y )

��

KX ′(X)
R f∗

// KY ′(Y ).

Consider the following diagram:

KX ′(X) //

R f∗

��

K(X) //

R f∗

��

K(UX)

R f∗

��

KS(T ∗X) //

G

��

99rrrrrrrrrr
K(T ∗X) //

G

��

::uuuuuuuuu
K(V )

G

��

( f ∗ν)∗
::uuuuuuuuu

KY ′(Y ) // K(Y ) // K(UY )

KS′(T ∗Y ) //

99rrrrrrrrrr
K(T ∗Y ) //

::uuuuuuuuu
K(V ′)

ν∗
::uuuuuuuuu

.

Here UX = X \X ′, V = T ∗X \S and similarly for UY and V ′. Since f is etale, T ∗Y ×Y X ∼= T ∗X .
It follows that the morphism G : K(T ∗X)→ K(T ∗Y ) is just the usual push-forward by an etale
morphism. This also gives a morphism G : KS(T ∗X)→ KS′(T ∗Y ) simply by restriction. On
the other hand, the morphism G : K(V )→ K(V ′) is not defined in general. However, for the
purposes of proving our commutativity we may replace S by f−1(S′). To see this, note that the
following diagram commutes:

KS(T ∗X)

%%LLLLLLLLLL

��

K f−1(S′)(X) // K(X ′)

The arrow on the bottom exists since f ∗ν(X \X ′)∩ f−1(S′) = /0. In particular, we may assume
that V gets mapped to V ′ under the natural etale morphism T ∗X → T ∗Y . Therefore, we can
again define G : K(V )→ K(V ′) by the usual push-forward by an etale morphism. Now we
have already seen that all the squares commute except possibly the ones with G in them. The
two squares in the front clearly commute. We would like to show that the three vertical slits
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commute. The left-most slit is the one in the theorem. The horizontal rows are homotopy cofiber
sequences; furthermore, the horizontal arrows in the left-most slit (i.e. the Eν ) are defined by the
universal property of these cofiber sequences. So we need only show that the left two vertical
slits commute. The right-most vertical slit is commutative by base change ([TT90], 3.18). For
the middle slit, we have to show that the following commutes:

K(T ∗X)

G
��

K(X)
π∗X

oo

R f∗
��

K(T ∗Y ) K(Y ).
π∗X

oo

Recall that G sends M to RprT ∗Y,∗ρ
!
f M [d f ]. But, since f is etale, ρ f ! = ρ f ∗ and d f = 0.

Then we have RprT ∗Y,∗ρ
!
f (π
∗
X(M ))[d f ] = RprT ∗Y,∗ρ

∗
f (π
∗
X(M ))→ RprT ∗Y,∗ ◦ pr∗X(M )→ π∗Y ◦

R f∗(F ), where the arrows are quasi-isomorphisms. The last one follows from the cartesian
square:

X×Y T ∗Y
prX

//

prT∗Y
��

X

f
��

T ∗Y
πY

// Y.

�

3.4. Comparison with topological epsilon factors. In this section we explain a conjectural
relation between de Rham and Betti epsilon factors. We begin by rendering the story of the
last two sections to the holonomic setting. Let Cb

hol(DX) ⊂ Cb
perf(DX) denote the full sub-

category of complexes with holonomic cohomology. We can also consider the corresponding
filtered categories CFb

hol(DX) and CFFb
hol(DX). We will use similar notation for the corre-

sponding derived categories Db
hol(DX), etc. We denote the corresponding K-theory spectra by

Khol(DX), etc. The results of the previous sections give us canonical morphisms of spectra
grS : Khol,S(DX)→ KS(T ∗X).

Remark 3.4.1. We could have started with complexes of holonomic DX -modules, as the re-
sulting derived categories are equivalent to the ones above. For the non-filtered versions this
is a well known result of Beilinson. One can prove a similar result in the non-filtered case.
However, this result will not be used in the following.

Let X be smooth and proper over C. The de Rham complex construction gives a functor DR :
Db

hol(DX)→ Db
c(X

an), where Db
c(X

an) denotes the derived category of constructible sheaves in
the classical topology on X . If M ∈ Db

hol(DX) and ν is a 1-form X \X ′ such that SS(M )∩
ν(X \X ′) = φ , then we have constructed a de Rham epsilon factor εdR

ν ,X ′(M ). This factor comes
equipped with a global period isomorphism: ηdR : det(RΓ(X ,M ))→ εdR

ν ,X ′(M ). On the other
hand, Beilinson ([Bei07]) has constructed a Betti epsilon factor εB

ν ,X ′(DR(M )). The Betti ep-
silon factor also comes equipped with a global period isomorphism: ηB : det(RΓ(Xan,DR(M )))→
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εB
ν ,X ′(DR(M )). Finally, we have the global de Rham isomorphism:

DR : det(RΓ(X ,M )→ det(RΓ(Xan,DR(M )).

Then one expects canonical local (i.e only depending on X ′ and ν around X ′) isomorphisms
DRν ,X ′ : εdR

ν ,X ′(M )→ εB
ν ,X ′(DR(M )) such that the following diagram commutes:

det(RΓ(X ,M )) DR
//

ηdR
��

det(RΓ(Xan,DR(M )))

ηB
��

εdR
ν ,X ′(M )

DR
ν ,X ′

// εB
ν ,X ′(DR(M )).

It follows from the work of Beilinson ([Bei09]) that the conjecture is true for curves. More
generally, one expects an identification at the level of homotopy points of spectra. The above
picture would result after taking determinants.

3.5. Animation of the Dubson–Kashiwara Formula. Let X/k be be a smooth variety of di-
mension d. Given M ∈ Db

perf(DX),we can associate to M its characteristic cycle CC(M ) ∈
CHd(T ∗X). Then the classical Dubson–Kashiwara formula states that the Euler characteristic
of M is equal to the degree of the zero cycle obtained by intersecting CC(M ) with the zero
section T ∗X X : χ(X ,M ) = (T ∗X X ,CC(M )). This formula has a natural animation at the level
of K-theory spectra. A similar animation was given by Beilinson in the case of constructible
sheaves on real analytic X ([Bei07]).
We have constructed a morphism grS : KS(DX)→ KS(T ∗X) such that the following diagram
commutes:

KFS,0(DX)

ω

��

grS

''NNNNNNNNNNN

KS,0(DX)
grS

// KS,0(T ∗X).

Let τX : K0(X)→ CH∗(X) denote the usual Riemann–Roch morphism. The image of the ho-
motopy point gr(M ) in K0(DX), denoted also by gr(M ), is given by gr(M ,F ) for some
(M ,F ) ∈ DFb

perf(DX) lifting M . Furthermore, if M ∈ Db
hol(DX), then it follows from Lau-

mon ([Lau83], 6.6.1) and the above commutative diagram (with S = T ∗X) that the image of
gr(M ) ∈CH∗(T ∗X) is given by CC(M ) ∈CHd(T ∗X), where d = dim(X). It follows that the
image of gr(M ) in CH0(X) is given by the intersection of CC(M ) with the zero section. The
image in CH0(k) = Z is just (T ∗X X ,CC(M )). On the other hand, the image of gr(M ) in K0(k)
is given by RΓ(X ,M ). Finally, its image in CH0(k) = Z is just the Euler characteristic. In fact,
we even get a microlocal animation of CC(M ) given by grS(M ).

4. THE CASE OF CURVES

In this section, we render our story to the case of curves. In particular, we will see that our theory
of epsilon factors gives rise to a classical theory of epsilon factors. Let us recall the definition
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of such a theory in the de Rham case (see ([BBE02]). Let k be a field of characteristic zero and
F = k′((x)) for some finite extension k′ of k. Let DF be the ring of differential operators on
F and Mhol(DF) the category of DF -modules such that the underlying F-vector space is finite
dimensional. If X is a curve and x ∈ X is a closed point, then we let Kx denote the function field
of Ox := ÔX ,x and k(x) denote the residue field at x. Any holonomic DX module M can be
pulled back to an object Mx ∈Mhol(DKx). Similarly, a non-vanishing meromorphic 1-form ν

on X gives rise to a 1-form νx ∈ ω(Kx). If tx is a uniformizer at x, then we have Ox = k(x)[[tx]]
and Kx = k(x)((tx)).
A classical theory of epsilon factors is rule which associates to a datum (F,M ), where M ∈
Mhol(DF), a function ε(F,M ) : ω(F)×→Ob(PicZ(k)) such that the following properties hold:
(1): For a short exact sequence 0→M1→M →M2→ 0 one has

ε(F,M ,ν) = ε(F,M1,ν)⊗ ε(F,M2,ν).

(2): Let F ′/F be a finite separable extension, M ′ ∈Mhol(DF ′) and ν ∈ω(F)×⊂ω(F ′)×. Then
one has

ε(F ′,M ′,ν) = ε(F,M ′,ν)⊗k k′.

(3): Most importantly, one has a product formula: Given a smooth projective curve X over k,
a divisor D⊂ X , U = X \D, ν a non-vanishing 1-form on U , and a holonomic DX module M
smooth off D such that j∗ j∗M where j : U → X , one has a global product isomorphism:

εdR : det(RΓ(X ,M ))→⊗xε(Kx,Mx,νx).

Let Mhol(DOx) denote the category of finitely generated DOx-modules M such that MKx :=
M ⊗Ox Kx is a finite dimensional Kx vector space. We have the associated K-theory spectra
Khol(DOx) and Khol(DKx). The rings of differential operators DOx and DKx come equipped with
filtration by order of differential operator. We denote by T ∗x X the pull-back T ∗X ×X Spec(Ox).
Just as before, we have the categories of D-modules with good filtrations MFhol(DOx) and
MFhol(DKx). Recall that a filtration F on M is good if and only if the corresponding grF (M )
is finitely generated; in particular, we have the usual notion of the singular support. There is a
natural pushforward functor: j∗ : Mhol(DKx)→Mhol(DOx). This is an embedding with essential
image consisting of M with invertible tx-action. In particular, it consists of DOx-modules with
singular support contained in txzx = 0, where zx is the image of ∂tx in the associated graded.
Denote this set by Sx ⊂ T ∗x X , and Vx be its complement.
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Proposition 4.0.1. Let νx ∈ ω(Kx)×. We have a commutative diagram of spectra:

K(Vx)
νx

// K(Kx)

Khol(DOx)
grx

// K(T ∗x X)
(π∗)−1

//

OO

K(Ox)

OO

Khol,Sx(DOx)
grS,x

//

OO

KSx(T
∗

x X)
Eνx

//

OO

K(k(x))

OO

Proof. The existence of grx and grS,x are proved exactly as for the global case from section
3. The two vertical columns on the right are the usual localization sequences. Finally, Eνx is
constructed exactly as in Lemma 3.19. �

The proposition gives rise to a classical theory of epsilon factors: Apply the proposition to F
and OF . For every F and ν ∈ω(F)× as above, we have a sequence Khol(DF)→KS(gr(DF))→
K(k′). We denote the composition by ε(F,ν). Any holonomic DF -module M gives a homotopy
point of Khol(DF). Then ε(F,ν)(M ) is a homotopy point of K(k′), and passing to determinants
gives ε(F,M ,ν) ∈ PicZ(k′). This gives rise to a classical theory of epsilon factors satisfying
(1) and (2) above.
The inculsion jx : Spec(Ox)→ X gives rise to a commutative diagram:

T ∗X×X Spec(Ox) //

��

Spec(Ox)

��

T ∗X // X .

Proposition 4.0.2. The following diagram commutes.

Khol,S(DX)
grS

//

��

KS(T ∗X)
εν

//

��

K(Y )

��

Khol,Sx(DOx)
grS,x

// KSx(T
∗

x X)
ενx

// K(k(x))

Proof. First note that for any open neighborhood U of x, the corresponding diagram for the
open immersions U → X commutes. In particular, we may assume that X is affine. We can
further assume that Y consists of a single point by passing to U small enough. We will first
prove that the following diagram commutes:

Khol,S(DX)
grS

//

��

KS(T ∗X)
εν

//

��

K(Y )

��

Khol,Sx(DOX ,x)
grS,x

// KSx(T
∗X×X Spec(OX ,x))

ενx
// K(k(x))
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Here, Sx is defined as before in T ∗X×Spec(OX ,x). Let Vx denote the complement. Also, we can
pull back ν to get a section νx : Spec(F(x))→Vx, where F(x) is the fraction field of Spec(OX ,x).
To show that the right square commutes it is enough to show that the following diagram given
by base change commutes:

K(T ∗X×X Spec(OX ,x)) //

��

K(Vx)

��

K(T ∗X) //

55lllllllllllll

��

K(V )

��

::ttttttttt

K(Spec(OX ,x)) // K(F(x))

K(X) //

55lllllllllllllll
K(U)

::ttttttttt

For this it is enough to check that both vertical slits commute. But this is a consequence of flat
base change ([TT90], 3.18). Now to show that the left square commutes, it is enough to show
that the following commutes:

KF(DX) //

��

K(T ∗X)

��

KF(DOX ,x) // K(T ∗X×X Spec(OX ,x))

Here KF(DX) is K-theory of DX -modules with filtrations and similarly for
Spec(OX ,x). A filtration on a DX -module can be pulled back to give one on the resulting DOX ,x-
module. The result follows from the compatibility of taking associated graded and passing
to stalks. This proves the result before passing to the completion. On the other hand, since
completion is faithfully flat, a similar argument allows to pass to the completion. �

If M is a holonomic DX -module on X such that j∗ j∗(M )=M , then εν ,Y (M )= ∑x∈Y εν ,x(M ).
It follows from the previous proposition that the homotopy points ενx(Mx) and εν ,x(M ) are
canonically identified as homotopy points of K(k(x)). Therefore, the resulting ε(F,M ,ν) sat-
isfy a global product formula. In particular, the ε(F,M ,ν) give rise to a classical theory of
epsilon factors.
In the case of curves, a classical theory of epsilon factors constructed was constructed by
Deligne and the rediscovered in ([BBE02]). In ([BBE02]), it is shown that the ε(F,M ,ν)
glue together for varying ν into a local system ε(F,M ) on ω(F)×. Furthermore, the epsilon
factors are expected to have an even more precise local nature. In particular, they should form
a de Rham factorization line (see [Bei09]). Our theory of epsilon factors also gives rise to
de Rahm factorization lines. For example, the connection on the epsilon line results from the
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fact that K(Sred) is equivalent to K(S) for any scheme S. Furthermore, this line is canonically
identified with that of ([Bei09]). The details will appear elsewhere.
Above we constructed a theory of epsilon factors at the level of homotopy points of spectra.
One gets the result for determinants by truncating the K-theory spectrum at K1. If we truncate
at K0, we get a local description of the Euler characteristic. On the other hand, the constructions
of ([BBE02]) are already at the level determinants. The above construction can be thought of
as a lifting of this construction to the whole K-theory spectrum.

5. APPENDIX

Let E be an exact category. Then K0(E ) can be thought of as the universal Euler characteristic.
More precisely, any function on isomorphism classes of objects of E into an abelian group,
which is additive on short exact sequences, factors through K0(E ). One can ask for a similar
universal description for the K-theory spectrum K(E ). In this section, we show that the [0,1]-
connected cover of K(E ), denoted by K(E )[0,1], can be thought of as the universal determinant
functor on E . The description of K(E )[0,1] as a universal determinant is certainly known to
the experts; in particular, Deligne ([Del87]) constructs a universal Picard groupoid P(E ) such
that π0(P(E )) = K0(E ) and π1(P(E )) = K1(E ). Here we show how to associate canonically
a Picard groupoid to a K-theory spectrum. Furthermore, we show that this Picard groupoid
satisfies the properties of a universal determinant for E . We begin by showing that the category
of Picard groupoids and that of [0,1]-connected spectra are homotopically equivalent. Next, we
recall the notion of universal determinant functors on exact categories and the result of Deligne
mentioned above. Finally, we show that the homotopy point construction allows us to construct
a universal determinant functor on E taking values in the Picard groupoid associated to the
spectrum K(E )[0,1]. In this section, we shall assume all our categories are small.

5.1. Picard groupoids and spectra. In this section, we prove an equivalence between the
homotopy category of [0,1]-connected spectra and that of Picard groupoids. This equivalence
is well known to the experts ([Bei07]). On the other hand, we could not find a reference in the
literature. We include a proof here for the sake of completeness. Recall that the category of
spectra, denoted by S , has two natural closed simplicial model category structures (strict and
stable). We shall denote by Ho(S )str and Ho(S )stb the corresponding homotopy categories.
A spectrum P is [0,1]-connected if all its homotopy groups vanish except in degrees 0 and 1.
We shall denote by Ho(S [0,1])stb the full subcategory corresponding to the [0,1]-connected
spectra. We refer the reader to ([BF78]) for details on these model structures and their relation
to Γ-spaces.

Definition 5.1.1. A Picard groupoid is a category P with the following additional data:
(1) A bifunctor ⊗ : P×P →P .
(2) For X ,Y,Z ∈ Ob(P), associativity constraints φX ,Y,Z : (X ⊗Y )⊗Z→ X ⊗ (Y ⊗Z) nat-

ural in X ,Y , and Z.
(3) For X and Y , commutativity constraints ψX ,Y : X⊗Y → Y ⊗X .

We require these data to satisfy the following:
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A: Every morphism in P is an isomorphism.
B: For all W , the functor X → X⊗W is an autoequivalence.
C: ψX ,Y ◦ψY,X = IdX⊗Y .
D: The following commutes (Pentagonal axiom):

(X⊗Y )⊗ (Z⊗T )
φ
−1
X⊗Y,Z,T

))TTTTTTTTTTTTTTT

φX ,Y,Z⊗Tuukkkkkkkkkkkkkkk

X⊗ (Y ⊗ (Z⊗T ))

IdX ⊗φ
−1
Y,Z,T

��

((X⊗Y )⊗Z)⊗T

φX ,Y,Z⊗IdT
��

X⊗ ((Y ⊗Z)⊗T )
φX ,Y⊗Z,T

// (X⊗ (Y ⊗Z))⊗T.

E: The following commutes (Hexagonal axiom):

X⊗ (Y ⊗Z)
IdX ⊗ψY,Z

''PPPPPPPPPPP

φ
−1
X ,Y,Zwwnnnnnnnnnnn

(X⊗Y )⊗Z

ψX⊗Y,Z
��

X⊗ (Z⊗Y )

φ
−1
X ,Z,Y

��

Z⊗ (X⊗Y )
φ
−1
Z,X ,Y

''PPPPPPPPPPP
(X⊗Z)⊗Y

ψX ,Z⊗IdYwwnnnnnnnnnnn

(Z⊗X)⊗Y .

Definition 5.1.2. A unit in a Picard groupoid consists of (I,λ ,ρ) where I ∈ Ob(P), λX : X →
I⊗X is a natural isomorphism and similarly for ρX : X → X⊗ I.

Every Picard groupoid has a unit which is unique up to unique isomorphism; we shall always
assume our Picard groupoids already come equipped with a chosen unit. Let π0(P) be the
abelian group of isomorphism classes of objects of P with the mulitplication given by ⊗ and
π1(P) = AutP(I). Let Pic denote the category of Picard groupoids. A morphism of Picard
groupoids will be a functor preserving the monoidal structure. Such a morphism induces a
map of the π0 and π1; we say that two Picard groupoids are homotopic if there is a morphism
which induces an isomorphism on π0 and π1. Let Ho(P) denote the corresponding homotopy
category (i.e,. localized at the homotopy equivalences).

Theorem 5.1.3. There is an equivalence of categories F : Ho(S [0,1])stb→ Ho(Pic). Further-
more, F preserves πi.

To prove the theorem we first construct functors in both directions. These constructions are due
to May and Segal, and are achieved via the Segal machine of Γ-spaces. Accordingly, we first
recall some basic aspects of the theory (see [Seg74]). Let Γo be the category of pointed finite
sets and pointed maps. For n ≥ 0, let n+ = {0,1, . . . ,n} with base point 0. Let C be a pointed
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category with initial and terminal object ∗. A Γ-object over C is a functor Γo → C such that
0+ maps to ∗. A Γ-space is a Γ-object over Sset∗ (the category of pointed simplicial sets). A
Γ-object is determined by its values on n+; therefore, in practice we shall only specify its values
on such sets. We’ll denote by Γspc the category of Γ-spaces.
Now we recall how to construct functors between Γspc and S , following Segal ([Seg74]). Let
A be a Γ-space. Then we can extend A to a functor Sset∗ → Sset∗, also denoted A. First let
A(W ) = colimV⊂W A(V ), where W is a pointed set and the limit is over all V ∈ Γ0. If K is a
simplicial set, then K[n] denotes the set of n-simplices. Now for K ∈ Sset∗ define A(K)[n] =
A(K[n])[n]; this gives a simplicial set A(K). Given K,L ∈ Sset∗ one has a natural morphism
L∧A(K)→ A(L∧K) where x∧y ∈ L[n]∧A(K)[n] goes to the image of y under the natural map
A(x∧−) : A(K[n])[n]→ A(L[n]∧K[n]). Given a spectrum P define a spectrum A(P) by setting
A(P)n = A(Pn) with structure maps S1∧A(Pn)→ A(S1∧Pn)→ A(Pn+1). Given spectra P and
P′ let Φ(P,P′) be the Γ-space defined by Φ(P,P′)(V ) = HomS (PV ,P′) for V ∈ Γo; thus, given a
spectrum P we can associate to it the Γ-space Φ(S,P). We shall denote this Γ-space associated
to a spectrum P by Γ(P). Conversely, given a Γ-space A we can associate to it the spectrum
A(S). These constructions give us well defined functors and in fact induce equivalences of
various homotopy categories.
A Γ-space A is called special if for all n≥ 1 the maps A(p1)×·· ·×A(pn) : A(n+)→ A(1+)×
·· ·×A(1+) are weak equivalences, where pi : n+→ 1+ is defined by pi(i) = 1 and pi( j) = 0
for all j 6= i. If A is a special Γ-space then π0(A(1+)) is an abelian monoid with multiplication
given by π0(A(1+)× π0(A(1+))← π0(A(2+))→ π0(A(1+)). The first arrow is induced by
A(p1)×A(p2) and the second arrow is induced by µ : 2+→ 1+, given by sending 0 to 0, 1 to
1 and 2 to 1. A Γ-space A is very special if it is special and π0(A(1+)) is an abelian group. It
follows from [BF78] that Γ(P) is very special if P is an Ω-spectrum. Furthermore, if A is very
special then A(S) is an Ω-spectrum.
Let P be a Picard groupoid. Given n+ or more generally a finite pointed set (S,∗), let Γ(P)(S)
denote the category whose objects are collections XU for each U ⊂ S\{∗}, where XU is an object
of P , with isomorphisms XU ⊗XV → XU∪V for all disjoint U and V such that the following
diagram commutes:

XU ⊗XV //

��

XU∪V

XV ⊗XU

99sssssssss

Here the vertical arrow is given by the commutativity constraint. We also require that the given
system of isomorphisms are compatible with pairwise disjoint triples, Xφ = I and Xφ⊗XU→XU
is the unit in P . Then Γ(P) is a Γ-category (i.e. a Γ-object over the category of categories). Let
KΓ(P) denote the associated Γ-space obtained by taking nerves. We shall denote the associated
spectrum by K(P). See ([May74]) for details of this construction in the more general setting
of permutative categories.

Lemma 5.1.4. Let P be a Picard groupoid. Then the associated Γ-space KΓ(P) is very
special.
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Proof. This follows directly from the definitions. The map Γ(P)(n+)→ Γ(P)(1+)× ·· · ×
Γ(P)(1+) is an equivalence of categories. It follows that the resulting map on nerves is a weak
equivalence. Furthermore, since Γ(P)(1+) = P , π0(KΓ(P)(1+)) = π0(P). The latter is a
group by definition. �

Lemma 5.1.5. We have πi(K(P)) = 0 for all i 6= 0,1.

Proof. By definition the spectrum K(P) is given by Γ(P)(S); i.e., the Gamma space associ-
ated to P evaluated at the sphere spectrum. Since this is an infinite loop space, πi(K(P)) =
πi(K(P)0). The zeroth space K(P)0 is equal to N(Γ(P)(S)0) = N(Γ(P)(S0)). The right
side is the simplicial set associated to S0 which is just 1+ (i.e., the pointed two point set). Since
Γ(P)(1+) = P , πi(N(P)) = πi(P) for i = 0,1, and πi(N(P)) = 0 for all other i ≥ 2, the
result follows. �

Now suppose A is a very special Γ-space. Then we can consider the Poincaré groupoid associ-
ated to the space |A(1+)|. Recall that this is the groupoid whose objects are points in |A(1+)|
and whose morphisms are homotopy classes of paths. If P is an Ω-spectrum, let Π(P) denote the
Poincaré groupoid of the associated very special Γ-space. In general, given a topological space
X we denote by Π(X) the associated Poincaré groupoid. Note that, given an Ω-spectrum P, we
have described two ways to associate a groupoid to P. The first is to take the Poincaré groupoid
associated to the very special Γ-space Γ(P), and the other is to take the Poincaré groupoid of the
geometric realization of the zeroth space P0. Both of these procedures give the same groupoid
(up to equivalence).

Proposition 5.1.6. If P is an Ω-spectrum, then Π(P) is a Picard groupoid.

Proof. Let P0 be the zeroth space. Then P0 is an infinite loop space, and the structure maps
give a homotopy equivalence P0 → ΩP1. Therefore, the induced map on Poincaré groupoids
Π(P0)→ Π(ΩP1) is an equivalence of categories. A choice of homotopy inverse to P0→ ΩP1
gives rise to a quasi-inverse to Π(P0)→ Π(ΩP1). Therefore, it is enough to show that Π(ΩP1)
has the structure of a Picard groupoid. On the other hand, the H-space structure on ΩP1 in-
duces a symmetric monoidal structure on the corresponding groupoid. Furthermore, it also has
canonically defined homotopy inverse. In particular, all the properties of Definition 5.1 are
satisfied. �

Note that the Picard groupoid structure constructed in Proposition 5.6 depends on the choice
of a homotopy inverse to P0 → ΩP1. However, there is a canonical Picard groupoid structure
on ΩP1. By abuse of notation, we shall continue to use the notation Π(P) to denote the Picard
groupoid Π(ΩP1). Let S f c denote the full sub-cateogry of fibrant-cofibrant spectra. Note that
the fibrant objects are precisely the Ω-spectra. Recall that we have fixed a fibrant-cofibrant
replacement functor S →S f c. In particular, we have a functor Π : S → Pic. On the other
hand, we have already constructed a functor K : Pic→ S . It follows from Lemmas 5.5 and
5.6 that we have induced functors Π : S [0,1] ↔ Pic : K. To show that these descend to the
homotopy categories, we must show that both Π and K preserve weak equivalences. This is an
easy consequence of the following folklore result about Picard groupoids ([Bre10]).
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Lemma 5.1.7. ([Bre10]) Let P and P ′ be Picard groupoids and A = (M,c) : P →P ′ a
moniodal functor. Then the following are equivalent:

(a): M is an equivalence of categories.
(b): M is an equivalence of Picard groupoids.
(c): M induces an isomorphism on π0 and π1.

Corollary 5.1.8. If f : P→ Q is a homotopy equivalence of [0,1]-connected spectra, then Π f :
Π(P)→Π(Q) is an equivalence of Picard groupoids. If g : P→ Q is an equivalence of Picard
groupoids then the resulting map K(P)→ K(Q) is a weak equivalence. In particular, we have
induced funtors Π : Ho(S [0,1])stb↔ Ho(Pic) : K.

Proof. It is clear that both functors preserve homotopy groups. The second statement fol-
lows. Now, a morphism of [0,1]-connected spectra induces a monoidal functor of the associated
groupoids. If the original morphism is a weak equivalence then the induced morphism on the
homotopy groups of the corresponding Picard groupoids are isomorphisms. Lemma 5.7 now
shows that the resulting morphism of Picard groupoids is an equivalence. This proves the first
statement. �

Proof. (Theorem 5.3) Let P be a Picard groupoid. Then we have canonical equivalences of
Picard groupoids Π(K(P)0)→P and Π(K(P)0)→ Π(ΩK(P)1); it follows that Π is es-
sentially surjective. If L is a fibrant-cofibrant spectrum in S [0,1], then we have a canonical
isomorphism L→ K(Π(L)) in the homotopy category. It follows that Π is full and faithful on
the homotopy category. �

5.2. Determinant Functors. In this section we recall the notion of determinant functors on ex-
act categories; the results are due to Deligne ([Del87]). A version of the theory for triangulated
categories is due to Breuning ([Bre10]).

Definition 5.2.1. Let E be an exact category. Let w be a class of morphisms in E closed under
composition and containing the isomorphisms, and let Ew be the subcategory with morphisms
restricted to w. Then a determinant functor for (E ,w) is a pair (F,P) where P is a Picard
groupoid and F = (F1,F2), where F1 : Ew→P is a functor and F2 is a rule which associates to
every short exact sequence δ : 0→ A→ B→C→ 0 an isomorphism F2(δ ) : F1(B)→ F1(A)⊗
F2(C) such that:

(1) For every morphism of short exact sequences

δ : 0 // A //

a
��

B //

b
��

C //

c
��

0

δ ′ : 0 // A′ // B′ // C′ // 0
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where the vertical maps are in w, one has a commutative diagram

F1(B) //

F1(b)
��

F1(A)⊗F1(C)

F1(a)⊗F1(c)
��

F1(B′) // F1(A′)⊗F1(C′)

where the rows are given by F2(δ ) and F2(δ ′).
(2) For every commutative diagram of short exact sequences:

A //

Id
��

B //

��

C′

��

A // C //

��

B′

��

A′
Id

// A′

one has a commutative diagram:

F1(C)
F2

//

F2

��

F1(A)⊗F1(B′)

Id⊗F2
��

F1(A)⊗ (F1(C′)⊗F2(A′))

��

F1(B)⊗F1(A′) // (F1(A)⊗F1(C′))⊗F1(A′)
where the bottom row is given by F2⊗ Id.

(3) For every pair of short exact sequences δ : A→ A⊕B→C and δ ′ : B→ A⊕B→ A the
following diagram is commutative:

F1(A⊕B)

F2(δ )wwnnnnnnnnnnn F2(δ ′)

''PPPPPPPPPPPP

F1(A)⊗F1(B) // F1(B)⊗F1(A).

A morphism of determinant functors F = (F1,F2) and G = (G1,G2) from Ew→P is a natural
transformation h : F1→ G1 such that (h(A)⊗h(B))◦F2(δ ) = G2(δ )◦h(B) : F1(B)→ G1(A)⊗
G1(C) for all short exact sequences δ . The category of determinant functors from (E ,w) to P
is denoted by det(Ew,P). The objects of this category are determinant functors and morphisms
are morphisms of determinant functors.

Definition 5.2.2. A universal determinant functor for (E ,w) is a determinant functor λ with val-
ues in a Picard groupoid V such that for every Picard groupoid P the functor HomPic(V ,P)→
det(Ew,P) induced by composition with λ is an equivalence of categories.
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Theorem 5.2.3. (Deligne) A universal determinant functor exists for (E ,w), where w is the
class of isomorphisms and E is a small exact category.

Remark 5.2.4. 1: One can also define a notion of determinant functor on any triangulated
category ([Bre10]). Furthermore, there is an analog of the above theorem in this setting as well.
2: One can associate to any exact category E the bounded derived category Db(E ). One can
show that any determinant functor on (E ,w) extends canonically to a determinant functor on
Db(E ) ([Knu02]).
3: Let πi(E ) = Ki(E ). Then the universal determinant functor induces an isomorphism on πi
for i = 0,1.

5.3. Homotopy points and universal determinants. In this section, we will use homotopy
points to construct a universal determinant functor with values in Π(K(E )). As already men-
tioned, the existence of universal determinants on exact categories has already been shown by
Deligne. The point here is that, by using the fundamental groupoid associated to the K-theory
spectrum, we get something which is canonically associated to the K-theory spectrum. In par-
ticular, various decompositions at the level of homotopy points of spectra will descend to the
corresponding Picard groupoids. As a result, we will be able to relate decompositions of ho-
motopy points to factorizations of determinants. The result in the language of DG-categories
appear in the work of Beilinson ([Bei07]). The results here are essentially a rendering of those
results in the language of Walhausen categories (applicable to the constructions in section 3 and
4).
Given an object A in a Waldhausen category W we can associate to it a homotopy point of
K(W ). First, we recall some facts about the Waldhausen K-theory construction. Recall that
to each category with cofibrations and weak equivalences C (i.e. each Waldhausen category),
Waldhausen associates a simplicial category S·C . Each SnC is also a Waldhausen category, and
the classifying space of the associated simplicial category of weak equivalences gives the K-
theory spectrum. The 0th-space is Ω|wS·C |. Waldhausen shows that this is an infinite loop space
(by iterating the S· construction). Now wS1C = wC and wS0C is the category with one object
and one morphism. As observed by Waldhausen, it follows that the 1-skeleton is naturally
isomorphic to S1 ∧ |wC |, which results in an inclusion S1 ∧ |wC | → |wS·C |. Therefore, by
adjunction, one has a map |wC | → Ω|wS·C |. Now |wC | is itself an infinite loop space (wC is
a symmetric monoidal category) and the above map is a morphism of loop spaces. An object of
C gives rise to a point in |wC | and therefore in Ω|wS·C |. Now a point in an infinite loop space
gives a homotopy point of the associated spectrum. Thus, we have associated to an object of a
Waldhausen category a homotopy point of the associated K-theory spectrum. Finally, a weak
equivalence in C gives rise to a path in the corresponding infinite loop space. This gives an
identification of the corresponding homotopy points.

Lemma 5.3.1. A homotopy point of an Ω-spectrum P gives rise to an object of the associated
(unique up to unique isomorphism) Picard groupoid. Furthermore, an identification of homo-
topy points gives rise to a canonical isomorphism in the Picard groupoid.
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Proof. Let K∧S→ P be a homotopy point of P. Then we have an induced map on fundamen-
tal groupoids Π(K ∧ S0)→ Π(P). Since K is contractible, the former groupoid is equivalent
Π(S0). Therefore, we get a map from Π(S0)→ Π(P). Then we can consider the image of the
unique non-identity object in Π(S0). Note, a different choice of contracting homotopy of K will
give another object of Π(P) canonically isomorphic to the original one. A similar argument
shows that an identification of homotopy points gives rise to a unique isomorphism between the
corresponding objects. �

As a result of the lemma, we can define a functor Det : (Cb(E ),qis)→ Π(K(Cb(E ))). The
resulting functor is a universal determinant functor.

Theorem 5.3.2. The functor Det : (Cb(E ),qis)→Π(K(Cb(E ))) is a determinant functor in the
sense of definition 5.9.

Proof. Let δ : 0→ A→ B→ C→ 0 be an exact sequence. This is a cofibration sequence in
the corresponding Waldhausen category. Let [A], [B], and [C] denote the correspoding points
in the infinite loop space Ω|wS.Cb(E )|, and let [A] + [C] denote the composition of the corre-
sponding loops. Then the image in the corresponding Picard groupoid is Det(A)⊗Det(B). The
cofibration sequence δ gives rise to a path from [B] to [A]+ [C]. This gives us an isomorphism
Det(B)→ Det(A)⊗Det(C). If δ ′ is another cofibration sequence and H a morphism of cofi-
bration sequences, then it follows from the definition of Ω|wS·Cb(E )| that we get a homotopy
from the path given by δ to the one given by δ ′. In particular, the diagram in (1) of Definition
5.9 commutes. The remaining properties follow in a similar manner. �

Remark 5.3.3. Suppose E is an exact category and A,B ∈ Cb(E ). It follows from the proof
above that the exact sequence 0→ A→ A⊕ B→ B→ 0 gives an identification of the two
homotopy points [A⊕B] and the homotopy sum (Lemma 2.3) of the homotopy points [A] and
[B] since this homotopy point corresponds to the composition [A] + [B] in the corresponding
infinite loop space.

Corollary 5.3.4. The functor Det : (Cb(E ),qis)→Π(K(Cb(E ))) gives a universal determinant
functor.

Proof. Let (Puni,det) be the universal determinant (which is known to exist) functor for Cb(E ).
One has a commutatve diagram (by universality):

Cb(E )
det

//

det

&&NNNNNNNNNN Puni

��

Π(K(Cb(E ))).

Now, by construction, both the top and bottom rows induce an isomorphism on π0 and π1.
Therefore the vertical arrow is a morphism of Picard groupoids which induces an isomorphism
on homotopy, and hence, it is an equivalence of Picard groupoids. �



46 DEEPAM PATEL

REFERENCES

[BBE02] Alexander Beilinson, Spencer Bloch, and Hélène Esnault. ε-factors for Gauss-Manin determinants.
Mosc. Math. J., 2(3):477–532, 2002. Dedicated to Yuri I. Manin on the occasion of his 65th birthday.

[Bei07] A. Beilinson. Topological E -factors. Pure Appl. Math. Q., 3(1, part 3):357–391, 2007.
[Bei09] Alexander Beilinson. E -factors for the period determinants of curves. In Motives and algebraic cycles,

volume 56 of Fields Inst. Commun., pages 15–82. Amer. Math. Soc., Providence, RI, 2009.
[BF78] A. K. Bousfield and E. M. Friedlander. Homotopy theory of Γ-spaces, spectra, and bisimplicial sets.

In Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, volume 658 of
Lecture Notes in Math., pages 80–130. Springer, Berlin, 1978.

[Bre10] Manuel Breuning. Determinant functors on triangulated categories. Journal of K-theory: K-theory and
its Applications to Algebra, Geometry, and Topology., 2010.
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