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Abstract. In this article, we construct a version of the Bloch-Srinivas ([3]) category
of enriched Hodge structures suitable for studying cycles on possibly singular quasi-
projective varieties. We show that the cohomology of punctured links gives rise to a
natural object of this category. These constructions are motivated by the study of cycles
on analytic links.
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1. Introduction

This paper is the first part of a project to associate Hodge theoretic invariants to algebraic
K-groups in some new situations, arising from analytic geometry; a key example is the
ring of convergent power series. In fact, the invariants we want to construct will involve
(a version of) the Enriched Hodge Structures (abbreviated as “EHS”) of [3], which we see
as a sort of enhancement of Deligne’s Mixed Hodge Structures (MHS), that also capture
some phenomena which are not detected by MHS.

We give in this first part a self-contained construction of an enriched Hodge structure (see
2.1), and of the underlying mixed Hodge structure, associated to certain “triples” consist-
ing of an analytic space and certain subspaces, and to a particular cohomological degree
m, such that the MHS underlying the EHS will be on the m-th singular cohomology with
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integral coefficients associated to the triple.

To be more precise, let X denote a complex analytic variety, and A,B Ă X be two
complex analytic subvarieties such that A is a complete algebraic variety, XzB is smooth,
and AzB is smooth. Let i : A ãÑ X and j : XzB ãÑ X denote the natural inclusions, and
consider the following singular cohomology group:

Hm
pA, i´1Rj˚Zq.

The triples pX,A,Bq form a category T 1 (see Definition 4.1), and the main result of this
article is that the aforementioned cohomology groups have natural (in triples) enriched
mixed Hodge structures, and therefore, in particular, mixed Hodge structures.

We do this by exhibiting certain (more or less) explicit Cohomological Enriched Hodge
complexes (which are natural generalizations of Cohomological Mixed Hodge complexes)
in the examples of relevance to us. Though similar constructions appear in the litera-
ture, they use somewhat different (possibly less explicit) methods, and make additional
hypotheses which are not valid in our situation. For example, if X,B are algebraic, the
theory of mixed Hodge modules due to M. Saito ([13]) gives a MHS on the aforemen-
tioned cohomology group. However, the theory of mixed Hodge modules does not give an
underlying cohomological Mixed Hodge complex (giving rise to the relevant MHS), and
the existence of such a complex is crucial for our construction of the enhancements to EHS.

On the other hand, for certain triples pX,A,Bq the relevant mixed Hodge structures and
the underlying mixed Hodge complexes were constructed previously by Durfee-Hain ([6]).
More precisely, Durfee-Hain consider triples of the form pX,A,BYAq where X is projec-
tive algebraic, A, B are closed subvarieties, and XzpAYBq is smooth. They then consider
the cohomology of the ‘link’ UzpAYBq, where U is a small enough neighborhood of A in
X, and show that these cohomology groups carry a natural (real) mixed Hodge structure
compatible with the cup-product pairing. Note that in loc. cit., this link is denoted by
LpX,AYB,Bq. As the authors explain in loc. cit., if p P V is an isolated singularity, then
LpX, V, pq is the link complement LpX, pqzLpV, pq, where LpX, pq (resp. LpV, pq) is the
usual link of an isolated singularity (which is a real manifold of dimension 2 dimpXq ´ 1
(resp. 2 dimpV q ´ 1q).

The present work will provide the technical foundations for a subsequent work, with a
more cycle theoretic flavor, where the constructions will be applied to study of the K-
theory of convergent power series rings, and more generally cycles on punctured links.
In particular, the development of K-theory in the context of triples and the construction
and study of the related cycles class maps (including a projective bundle formula and
Gysin maps in the setting of triples) will be left to a future paper. We note here that
the K-theory of convergent power series appears naturally as the K-theory of a limit of
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certain triples, and the corresponding cohomology group (i.e. the target of the corre-
sponding cycle class maps) appears in Theorem 5.3. Given the technical nature of the
EHS construction, including the verification that it is well defined independent of choices,
and appropriately functorial, we felt it makes sense to place this material in a single work,
concentrating only on those aspects.

However, to give the reader some context for the constructions in this paper, we dis-
cuss in Section 6 one of the overall goals of the project. We discuss which K-groups we
want to study, and sketch the construction of a version of Deligne-Beilinson cohomology
which naturally arises from our EHS constructions (making use also of the Cohomolog-
ical Enriched Hodge complexes underlying them, just as in the original constructions of
Deligne, generalized by Beilinson). The (expected) properties of this theory of Enriched
Deligne-Beilinson Cohomology groups will be developed carefully in subsequent work, but
in particular we expect to construct a theory of Chern classes and Chern characters with
values in these, and also to establish a description of these Enriched Deligne-Beilinson
cohomologies as extensions of Hom and Ext1 groups using our EHS groups constructed
here. This is of course parallel to what we know for Deligne-Beilinson cohomology.

We also work out a few explicit examples “by hand”, which give the flavor of the theory,
and an indication as to what aspects of the K-theory may be reflected in our invariants.
The computations even in simple cases exhibit a rich interplay with geometric features
appearing in the blow ups (versions of log resolutions, for triples) which are needed to
define our EHS structures. We hope that these computations, and a description of our
(plausible) expectations, provide sufficient motivation for undertaking the specific con-
structions appearing in this paper.

We stress that even the construction of the underlying MHS, and in particular the coho-
mological Mixed Hodge complexes, are new in some situations, since we consider analytic
spaces, though they are somewhat motivated by other such constructions in the literature
in the algebraic case. We also note that our constructions are relatively elementary, made
with explicit complexes of a geometric origin, and without recourse to D-modules etc.
These are thus of independent interest.

Notation: In the following, MHS will denote the usual category of mixed Hodge struc-
tures.

2. Enriched Hodge structures

In this section, we define and study a close variant of the category of enriched Hodge
structures studied by Bloch-Srinivas ([3]) and prove a basic proposition computing some
Ext groups in this category. We give some natural examples of enriched Hodge structures
arising from geometry, which will be useful for us later on.
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2.1. (The category of Enriched Hodge structures) Let C denote the category whose
objects are diagrams

¨ ¨ ¨ Ñ Vh
th
ÝÑ Vh´1

th´1
ÝÝÑ Vh´2 Ñ ¨ ¨ ¨ ,

where each Vi is a (not necessarily finite dimensional) complex vector space and such that
there exist α and β with tm an isomorphism for all m ą α and Vm “ 0 for all m ă β. The
morphisms in C are morphisms of diagrams. For an object V P C, it makes sense to define
V8 by setting V8 :“ Vm for large m. This is well defined upto (canonical) isomorphism.
Given M P MHS (recall, MHS denotes the usual category of mixed Hodge structures), let
Mp :“ MC{F pMC. Setting

spMq :“ p¨ ¨ ¨ Ñ Mp`1 Ñ Mp Ñ Mp´1 Ñ ¨ ¨ ¨ q

and noting that F ‚ is a decreasing filtration, gives rise to a functor s : MHS Ñ C.

Example 2.2. The image of the Tate object spZp´pqq is given by the diagram with
spZp´pqqm “ C for all m ě p ` 1 and zero otherwise. By abuse of terminology, we shall
refer to this as the Tate object of C, and also denote it by Cp´pq.

Definition 2.3. An enriched Hodge structure is a triple pM,V, fq, where M P MHS,
V P C, and f : V Ñ spMq is a morphism such that fm is an isomorphism for large m.

In particular, given an enriched Hodge structure one has an induced isomorphism f8 :
V8 Ñ spMq8.

Definition 2.4. A morphism of enriched Hodge structures ϕ : pM1, V1, f1q Ñ pM2, V2, f2q
is a pair pϕ, ψq, with ϕ P HomCpV1, V2q and ψ P HomMHSpM1,M2q, such that ϕ and ψ are
compatible with f1 and f2. In particular, the following diagram commutes:

V1
f1
//

ϕ

��

spM1q

spψq

��

V2
f2
// spM2q

We denote by EHS the category of enriched Hodge structures as defined above. It is easy
to show that EHS is an abelian category, based on the fact that MHS and C are both
abelian categories, and the functor s is exact.

Remark 2.5. We note that the above definition of EHS differs from the category of
enriched Hodge structures define by Bloch-Srinivas in ([3]). For the moment we note that
the current version is a full subcategory of the category defined by Bloch-Srinivas. We
refer to 2.18 for more details.

Remark 2.6. Note that for any pV,M, fq P EHS, the linear maps fm are onto for all m.
This follows from the fact that V8 – MC and Mp`1 Ñ Mp is onto for all p.
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Example 2.7. Any object M P MHS gives an object object pM, spMq, Idq P EHS. In
particular, we have the Tate objects denoted Zppq P EHS.

The following are some easy examples of enriched Hodge structures.

Example 2.8. Let X be a smooth projective complex algebraic variety (or a compact
Kahler manifold). Then we shall denote by Hi

EpXq the enriched Hodge structure associ-
ated to X given by the triple pHipXq, spHipXqq, Idq where HipXq denotes the usual Hodge
structure on the singular cohomology of X.

Example 2.9. (Compactly supported cohomology) If X is a smooth (not necessarily
projective) algebraic variety, then we can also associate an enriched Hodge structure
Hi
c,EpXq :“ pHi

cpXq, V, fq to compactly supported cohomology as follows. Here Hi
cpXq is

the usual mixed Hodge structure on compactly supported cohomology of X constructed
by Deligne. We set

Vp :“ Hi
cpX,OX Ñ ¨ ¨ ¨ Ñ Ωp´1

X q

and let fp : Hi
cpX,OX Ñ ¨ ¨ ¨ Ñ Ωp´1

X q Ñ Hi
cpXq{F p denote the natural map. Here, the

compactly supported cohomology (i.e. the hypercohomology group above) is computed
in the analytic topology.

Example 2.10. (Projective Variety) If X is a projective variety (not necessarily smooth),
then we can associate an enriched Hodge structure Hi

EpXq :“ pHipXq, V, fq as follows.
Again, HipXq is the usual mixed Hodge structure given by Deligne. Let V 1

p “ HipX,OX Ñ

¨ ¨ ¨ Ñ Ωp´1
X q. This gives an object V 1 P C with V 1

8 :“ HipX,Ω‚
Xq. If X̃‚ Ñ X is a proper

smooth (simplicial) hypercover, then one has a natural diagram:

Hi
pXq Ñ Hi

pX,Ω‚
Xq Ñ Hi

pX̃‚,Ω
‚

X̃‚
q Ñ Hi

pXq

where the rightmost arrow is an isomorphism and the composition of all three maps is the
identity. LetK8 :“ kerpV 1

8 Ñ HipX̃,Ω‚

X̃
qq and set Vp :“ V 1

p{ImpK8q. This gives an object

V P C such that V8 – HipXq. Furthermore, there is a natural map f : V Ñ spHipXqq

giving rise to the required enriched Hodge structure. It can be checked that this is
independent of the chosen hypercover.

We note that the above constructions are not unique in any sense. For instance, any
variety can be given an enriched Hodge structure by considering the enriched structure
associated to the mixed Hodge structure on its cohomolgy as in Example 2.7.

2.11. (Extensions of enriched Hodge structures) Let D “ pM,V, fq be an enriched
Hodge structure. For any m, let WmD “ pM 1, V 1, f 1q, where M 1 :“ WmM P MHS,

V 1
h :“ f´1

h pWmMC{F hWmMCq

and f 1 is the natural induced morphism. Note that M 1
Z :“ kerpMZ Ñ MQ{WmMQq.

Remark 2.12. The previous construction gives rise to an increasing weight filtration
W¨D (in EHS) on D. Moreover, this construction is functorial in D.
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Proposition 2.13. Let D “ pM,V, fq P EHS, D1 “ pM 1, V 1, f 1q :“ W2pD, and ψ denote
the composite:

M 1
Z Ñ M 1

C
pf 1

8q´1

ÝÝÝÝÑ V 1
8 Ñ V 1

p

p2πiqp

ÝÝÝÑ V 1
p .

Then there are natural (in D) isomorphisms:

(1) HomEHSpZp´pq, Dq Ñ kerpψq.
(2) Ext1EHSpZp´pq, Dq Ñ cokerpψq.

We begin with some lemmas.

Lemma 2.14. Let D be as in the proposition. Then one has an exact sequence:

0 Ñ HomEHSpZp´pq, Dq Ñ HomMHSpZp´pq,Mq‘HomCpCp´pq, V q Ñ HomCpCp´pq, spMqqq.

The second arrow is given by sending a pair pϕ1, ϕ2q to spϕ1q ´ f ˝ ϕ2.

Proof. This follows from the definition of morphisms of enriched Hodge structures. □

Lemma 2.15. Let D and D1 be as in Proposition 2.13.

(1) The natural map

HomEHSpZp´pq, D1
q Ñ HomEHSpZp´pq, Dq

is an isomorphism.
(2) The natural map

Ext1EHSpZp´pq, D1
q Ñ Ext1EHSpZp´pq, Dq,

is an isomorphism.

Proof. We first observe that the corresponding statements in MHS with D (resp D1)
replaced by M (resp. M 1) are true. In particular, HomMHSpZp´pq,M{M 1q “ 0 and
Ext1MHSpZp´pq,M{M 1q “ 0. Consider the exact sequence of enriched Hodge structures

0 Ñ D1
Ñ D Ñ D{D1

Ñ 0.

Applying the Hom functor to this short exact sequence reduces us to showing that
HomEHSpZp´pq, D{D1q “ 0 and Ext1EHSpZp´pq, D{D1q “ 0. By the previous observation
and Lemma 2.14, we have an exact sequence:

0 Ñ HomEHSpZp´pq, D{D1
q Ñ HomCpCp´pq, V {V 1

q Ñ HomCpCp´pq, spM{M 1
qq.

Therefore, the first statement will follow if the rightmost arrow in the above diagram is
injective. On the other hand, any morphism Cp´pq Ñ V {V 1 in C is determined by an
element of pV {V 1q8 – spM{M 1q8 (which maps to zero in pV {V 1qp). One can argue in a
similar manner for the second part. We leave the details to the reader. □

Proof. (Proposition 2.13)
(1) Since HomMHSpZp´pq,M 1q “ M 1

Z, an application of Lemma 2.15 gives a natural map
HomEHSpZp´pq, Dq Ñ M 1

Z. Furthermore, since Zp´pqp “ 0, it’s composition with ψ is
zero. This gives a natural injective map HomEHSpZp´pq, Dq Ñ kerpψq, and it’s easy to
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construct an inverse.
(2) We begin by constructing a natural morphism: Ext1EHSpZp´pq, Dq Ñ cokerpψq. Let
rEs P Ext1EHSpZp´pq, Dq be an extension class represented by an extension

0 Ñ D Ñ E Ñ Zp´pq Ñ 0,

where E “ pW,N, gq. Let E 1 “ pW 1, N 1, g1q :“ W2pE. Then the extension above gives a
commutative diagram with exact rows

0 // M 1
Z

//

ψ

��

N 1
Z

//

ψ

��

Zp´pq //

��

0

0 // V 1
p

// W 1
p

// 0 // 0,

where the vertical maps are given by ψ. An application of the snake lemma, then gives
a canonical element of cokerpψq. One can check that this is independent of the choice of
representative for the extension, and hence we get a natural map

θ : Ext1EHSpZp´pq, Dq Ñ cokerpψq.

Furthermore, an explicit computation shows that this is a group homomorphism, where
the Ext group has the usual additive structure coming from the Baer sum.

Injectivity of θ: Suppose θprEsq “ 0. Then there is a c P N 1
Z such that ψpcq “ 0 and the

image of c in Zp´pq is p2πiqp ¨ 1. It follows that c gives a splitting Cp´pq Ñ W (in C). It
also gives rise to a splitting of the corresponding exact sequence of MHS.

Surjectivity of θ: By Lemma 2.15, it is sufficient to construct an extension

0 Ñ D1
Ñ E 1

Ñ Zp´pq Ñ 0

for any α P V 1
p such that θprEsq “ sα. Here sα is the image of α in cokerpψq. We begin by

constructing a triple E 1 “ pW 1, N 1, g1q.
(a) Construction of W 1: We setW 1

m :“ V 1
m‘C if m ě p`1 andW 1

m “ V 1
m otherwise. The

transition morphisms for the diagram are the natural ones except W 1
p`1 Ñ W 1

p is given by
sending p0, 1q to α. This gives an object W 1 P C.
(b) Construction of N 1: We set N 1

Z “ M 1
Z ‘ Zp´pq. We define the weight filtration by

setting WkN
1
Q :“ WkM

1
Q ‘ WkZp´pqQ. Then we have N 1

C “ W 1
8. Furthermore, we set

F kN 1
C :“ kerpN 1

C Ñ spN 1qkq. The morphism f 1 induces a morphism g1 : W 1 Ñ spN 1q. We
leave it to the reader to check that these data define an enriched Hodge structure. The
main thing is to check that the Hodge filtration is n-opposite. □

Example 2.16. Suppose X is a smooth projective variety. Then by Proposition 2.13 one
has

HomEHSpZp´pq,Hi
EpXqq “ HomMHSpZp´pq,Hi

EpXqq

and similarly for Ext1.
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Corollary 2.17. For any D P EHS, one has ExtiEHSpZp´pq, Dq “ 0 for all i ě 2.

Proof. By Proposition 2.13, it’s enough to show that the endofunctor D ÞÑ WkD is exact
(for any k). The latter is a consequence of the surjectivity explained in Lemma 2.6. □

2.18. (Comparison with the Bloch-Srinivas Category) As remarked earlier, the
category of enriched Hodge structures defined in Bloch-Srinivas ([3]) is slightly different
than ours. We comment briefly on the difference.

Let us denote by EHS1 the category of enriched Hodge structures defined by Bloch-
Srinivas. An object in EHS1 is a quadruple pM,V, ρ, πq where M P MHS, V P C, and
π : V Ñ spMq. Furthermore, one requires the existence of an a such that spMqi Ñ spMqa
and Vi Ñ Va are isomorphisms for all i ą a. Therefore, it makes sense to speak of spMq8

and V8. Note that spMq8 “ MC. Finally, ρ : spMq8 Ñ Va is a morphism such that π ˝ ρ
is the identity (i.e. a splitting).

Note that we may view EHS as a full subcategory of EHS1 in a natural way, since for
any object pV,M, fq in EHS, the map f8 : V8 Ñ spMq8 is an isomorphism, and so may
also be viewed as a split surjection, thus automatically determining the “extra” data of a
splitting ρ.

On the other hand, EHS1 has a full subcategory equivalent to C , consisting of objects
p0, V, 0, 0q with trivial underlying MHS. It is clear that a general object in EHS1 is the
direct sum of two objects in the essential images of EHS and C.

2.19. (Further Remarks) Let D “ pV,M, fq, D1 “ pV 1,M 1, f 1q P EHS. We want to
define an object D b D1 with underlying MHS M b M 1. We discuss here the existence
of a monoidal structure on a certain full sub-category of EHS. Let EHSs denote the full
subcategory consisting of objects pM,V, fq such that Vh Ñ Vh´1 is surjective for all h.
We note that EHSs is a full exact subcategory of the abelian category EHS.

Remark 2.20. (1) The natural inclusion EHSs ãÑ EHS has a natural right adjoint
EHS ãÑ EHSs. One replace Vp by the image of V8 in Vp.

(2) The functor s : MHS Ñ EHS factors through EHSs. Moreover, the natural forget-
ful functor ff : EHSs Ñ MHS is a left adjoint.

Proposition 2.21. (1) The category EHSs has a natural symmetric monoidal struc-
ture.

(2) The functors s : MHS Ñ EHSs and ff : EHSs Ñ MHS are symmetric monoidal
functors.

Proof. Given two objects D “ pV,M, fq and D1 “ pV 1,M 1, f 1q, we define an object D b

D1 :“ pV b V 1,M b M 1, f b f 1q as follows. We define M b M 1 using the usual monoidal
structure on mixed Hodge structures. Let Lk :“ kerpV8 Ñ Vkq and similarly L1

k :“
kerpV 1

8 Ñ Vkq. We set pV bV 1qk :“ V8 bV 1
8{pΣm`n“kLm bL1

nq. Note that spM bM 1qk “
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pspMqbspM 1qqk. It follows that one has induced maps fkbfk1 : pV bV 1qk Ñ spMbM 1qk.
Then we define the tensor product as pV,M, fq b pV 1,M 1, f 1q :“ pV bV 1,M bM 1, f bf 1q.
We leave it to the reader to check that this gives a well defined symmetric monoidal
structure on EHSs. The second part of the proposition is a direct consequence of the
construction.

□

Remark 2.22. For any object pV,M, fq P EHS, we can define Tate twists

pV,M, fqp´pq :“ pV p´pq,Mp´pq, fp´pqq b Zp´pq

as follows. We set the underlying diagram of complex vector spaces, denoted by V p´pq,
to be the original V shifted to the right by p (i.e. V p´pqk “ Vk`p). The mixed Hodge
structure part Mp´pq is the usual Tate twist.

3. Preliminaries on Logarithmic forms

Let f : X Ñ Y be a proper birational morphism of smooth complex analytic varieties
(resp. smooth algebraic varieties) with B Ă Y and C :“ f´1pBq Ă X simple normal
crossings divisors. Suppose that f |XzC : XzC Ñ Y zB is an isomorphism. In the algebraic
case, it was shown in ([7] and [10]) that the natural adjunction map

Ωp
Y plogBq Ñ Rf˚Ω

p
XplogCq

is an isomorphism. Moreover, the proof of this statement given in ([10]) also applies in
the complex analytic situation. The aforementioned result will be applied to show the
independence of the choice of resolutions in the construction of the enriched Hodge struc-
tures on thickenings of complex analytic varieties.

Below we give a short, independent, and self contained proof of the aforementioned result
along with a slightly more general result (allowing for blow-ups along subvarieties not
necessarily contained in B). The latter setting (i.e. allowing more general blow-ups) will
be applied in a future paper in order to construct Gysin sequences in the EHS setting.

3.1. (The case of blow-ups) In this paragraph, let X be a smooth complex analytic
variety, let B be a divisor with simple normal crossings on X, and let Z be a connected
smooth subvariety of X. Following Hironaka ([8], Definition 2, page 141), we recall that
Z has normal crossings with B if for each point z P Z there is a local coordinate system
px1, ¨ ¨ ¨ , xnq on X such that Z is locally defined by tx1 “ 0, . . . , xi “ 0u and B is locally
defined by txjxj`1 ¨ ¨ ¨ xk “ 0u, for some i, j, and k. We will henceforth assume that this
is the case, in this section.

Remark 3.2. We could also start with X a smooth algebraic variety, B a simple normal
crossings divisor (s.n.c.d), and Z a smooth connected complex analytic subvariety of X;
we may similarly define the notion of Z having normal crossings with B. The discussion
below in goes through in this setting as well.
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Theorem 3.3. Let π : rX Ñ X be the blow-up of X along Z, E be the exceptional divisor

of the blow-up, and let rB “ pE Y π´1Bqred.

(1) Assume that Z is contained in B. Then

Ωp
XplogBq Ñ Rπ˚Ω

p
rX
plog rBq

is a quasi-isomorphism for all p ě 0.
(2) Assume Z is not contained in B. Let s denote the codimension of Z in X. For

all p ě 0, in the derived category of sheaves on X, we have an exact triangle:

i˚Ω
p´s
Z plogB|Zqr´ss Ñ Ωp

XplogBq Ñ Rπ˚Ω
p
rX
plog rBq Ñ i˚Ω

p´s
Z plogB|Zqr1 ´ ss.

Here i : Z ãÑ X is the natural inclusion.

We first give a proof of the Theorem assuming the following Lemma.

Lemma 3.4. Let Q :“ Ω1
rX
plog rBq, and let P denote the image of π˚Ω1

XplogBq Ñ

Ω1
rX
plog rBq. There are locally free sheaves F and G on Z and isomorphisms

Q{P – O
rXpEq b π˚i˚F and P {Qp´Eq – π˚i˚G

where i : Z ãÑ X denotes the inclusion. Furthermore, the rank of F is the codimension
of Z in X minus the number of irreducible components of B that contain Z.

We now give a proof of Theorem 3.3.

Proof. (Theorem 3.3) We will appeal first to the standard fact that L Ñ Rπ˚π
˚L is an

isomorphism for a locally free sheaf L on X. In particular, Ωp
XplogBq Ñ Rπ˚

Źp P is
an isomorphism. Thus the first part is equivalent to the vanishing of Rπ˚p

ŹpQ{
Źp P q,

whereas the second requires an isomorphism of this with i˚Ω
p´s
Z plogB|Zqr1 ´ ss.

The other fact we appeal to is the vanishing of Rπ˚ pOX̃piEq b π˚i˚Hq for every 0 ă

i ă s “ codimpZq, and for every coherent sheaf H on Z. This is clear because E is a
Ps´1-bundle on Z and O

rXpEq restricts to Op´1q of this projective bundle.

Every subsheaf M Ă Q gives rise to a decreasing filtration

F k
M

p
ľ

Q “ imagep
p´k
ľ

Q b

k
ľ

M Ñ

p
ľ

Qq

indexed by 0 ď k ď p. In particular, we get two filtrations: Sk “ F k
P and T k “ F k

Qp´Eq
.

By Lemma 3.4, Qp´Eq is contained in P . It follows that Sk contains T k, and this shows
that graSgr

b
T

ŹpQ “ 0 when a ă b. We are more concerned with
ŹpQ{

Źp P , and there-
fore it suffices to concentrate of the pa, bq-th term for 0 ď b ď a ă p.
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Again, by the Lemma 3.4, both Q{P and P {Qp´Eq are the push-forwards of locally free
OE-modules. We deduce the isomorphism below for the terms 0 ď b ď a ă p:

graSgr
b
T

p
ľ

Q – Op´bEq b

a´b
ľ

pP {Qp´Eqq b

p´pa´bq
ľ

pQ{P q

and employing the isomorphisms of Lemma 3.4, we get

graSgr
b
T

p
ľ

Q – Oppp ´ aqEq b π˚i˚p

a´b
ľ

G b

p´pa´bq
ľ

Fq.

If the above pa, bq-th term is nonzero, then

0 ă p ´ a ď p ´ pa ´ bq ď rankpFq ď s.

Note that 0 ă p ´ a ă s gives the vanishing of Rπ˚ of the pa, bq-th term.

The only pa, bq-th term left to consider is when pa, bq “ pp´s, 0q. Noting that Rjπ˚OEpsEq

is zero when 0 ď j ď ps ´ 1q, we obtain the exact triangle

Ωp
XplogBq Ñ Rπ˚

p
ľ

Q Ñ i˚p

p´s
ľ

G b

s
ľ

Fq b Rs´1π˚OEpsEqr1 ´ ss Ñ Ωp
XplogBqr1s

The first part of the Theorem follows because in that situation, the rank of F is less than
s. The second part will be clear from the explicit description of F and G provided by the
proof of the Lemma 3.4. □

Proof. (Lemma 3.4) Suppose B “
ř

iBi, and let B̃i be the strict transform of Bi. Then

B̃ “ E `
ř

i B̃i. The standard commutative diagram of residue exact sequences

0 // Ω1
X̃

//

Id

��

Ω1
X̃

plogEq //

��

OE
//

��

0

0 // Ω1
X̃

// Ω1
X̃

plog B̃q // OE ‘ p‘iOB̃i
q // 0

gives an exact sequence

(1) 0 Ñ Ω1
X̃

plogEq Ñ Ω1
X̃

plog B̃q Ñ ‘iOB̃i
Ñ 0.
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Consider now the commutative diagram with exact rows and columns:

0

��

0

��

0 // π˚Ω1
X

//

“

��

Ω1
X̃

//

��

Ω1
E{Z

//

��

0

0 // π˚Ω1
X

// Ω1
X̃

plogEq //

��

Coker //

��

0

OE

��

“
// OE

��

0 0

This gives an exact sequence of OE-modules:

0 Ñ Ω1
E{Z Ñ coker Ñ OE Ñ 0.

On the other hand, one has the usual Euler sequence for the projective bundle E Ñ Z:

0 Ñ Ω1
E{Z Ñ π˚

pIZ{I2
Zq b OEp´1q Ñ OE Ñ 0.

We claim that both of these extensions are isomorphic. To see this, note that both exten-
sions give elements of H1pE,Ω1

E{Zq. Since the map H1pE,Ω1
E{Zq Ñ H0pZ,R1π˚Ω

1
E{Zq is an

isomorphism, both extension give nowhere vanishing sections of the bundle R1π˚Ω
1
E{Z –

OZ , and therefore must be isomorphic extensions. Since E is the exceptional divisor of
π, the ideal OX̃p´Eq coincides with OX̃p1q (for X̃ :“ Projp‘ně0InZq). The latter restricts
to OEp1q (for E :“ Projp‘ně0In{In`1q). It follows that OEp´1q – OX̃pEq bOE. By the
previous remarks, we have an exact sequence:

(2) 0 Ñ π˚Ω1
X Ñ Ω1

X̃
plogEq Ñ π˚

pIZ{I2
Zq b OX̃pEq Ñ 0.

The exact sequences (1) and (2) give a commutative diagram with exact rows and columns:

(3) 0 // π˚Ω1
X

//

“

��

Ω1
X̃

plogEq //

��

π˚pIZ{I2
Zq b OX̃pEq //

��

0

0 // Ω1
X̃

plogEq // Ω1
X̃

plog B̃q //

��

‘iOB̃i
// 0

‘OB̃i

��

0
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The standard residue exact sequence

0 Ñ Ω1
X Ñ Ω1

XplogBq Ñ ‘iOBi
Ñ 0

gives after pullback an exact sequence:

0 Ñ π˚Ω1
X Ñ π˚Ω1

XplogBq Ñ ‘iOπ´1Bi
Ñ 0.

Note that the left-most morphism (between locally free sheaves) is injective since it is an
injection at the generic point. It follows that one has a commutative diagram with exact
rows and columns:

0

��

0

��

0

��

ker

��

0 // π˚Ω1
X

//

��

Ω1
X̃

plogEq //

��

π˚pIZ{I2
Zq b OX̃pEq //

��

0

o // π˚Ω1
XplogBq //

��

Ω1plog B̃q //

��

Q{P //

��

0

‘iOπ´1Bi
// ‘iOB̃i

// 0

It follows that one has an exact sequence:

0 Ñ ker Ñ ‘iOπ´1Bi
Ñ ‘iOB̃i

Ñ 0,

and therefore

ker – ‘i,ZĂBi
OX̃p´B̃iq b OE.

(In particular this kernel is trivial is Z is not contained in B. ) The previous commutative
diagram combined with this exact sequence (and after twisting by Op´Eq) gives an exact
sequence:

0 Ñ ‘i,ZĂBi
OX̃p´B̃i ´ Eq b OE Ñ π˚

pIZ{I2
Zq Ñ Q{P p´Eq Ñ 0.

Since OX̃p´B̃i ´ Eq b OE – π˚OXp´Biq b OE, we conclude that

pQ{P qp´Eq – π˚
pcokerp‘ZĂBi

IBi
Ñ IZ{I2

Zqq “ π˚
pcokerp‘ZĂBi

IBi
{IBi

IZ Ñ IZ{I2
Zqq.

Let F :“ cokerp‘ZĂBi
IBi

{IBi
IZ Ñ IZ{I2

Zq. Then Q{P – OX̃pEq b π˚i˚F . Since Z
has normal crossings with Bi, IBi

{IBi
IZ are line bundles on Z. It follows that the map

‘ZĂBi
IBi

{IBi
IZ Ñ IZ{I2

Z is an inclusion of vector bundles. This show that F has rank
as stated in the Lemma. This proves the first part of the Lemma.
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For the second part, note that one has a natural exact sequence:

0 Ñ pQ{P qp´Eq Ñ P {P p´Eq Ñ P {Qp´Eq Ñ 0.

The result then follows by observing that P {P p´Eq is isomorphic to the restriction of
π˚Ω1

XplogBq to E, and therefore is the pull-back of a bundle on Z. Since E Ñ Z is a
projective bundle, it follows that P {Qp´Eq must also be the pull back of a bundle on Z,
and in particular, P {Qp´Eq also has the desired form. □

The general case (i.e. for arbitrary proper birational maps) of Theorem 3.3 Part (1)
follows as a result of the previous theorem, the following categorical Lemma (whose proof
is omitted), and an application of Hironaka’s elimination of indeterminacies, as we now
explain.

Lemma 3.5. Let D be a category and u, v, w be morphisms in D such that both uv and
vw are defined and are isomorphisms. Then u is an isomorphism.

Corollary 3.6. Let f : X Ñ Y be a proper birational morphism of smooth complex
analytic varieties with B Ă Y and C :“ f´1pBq Ă X simple normal crossings divisors.
Suppose that f |XzC : XzC Ñ Y zB is an isomorphism. Then the natural adjunction map

Ωp
Y plogBq Ñ Rf˚Ω

p
XplogCq

is an isomorphism.

Proof. First, note that the question is local on the base, and fix a point y P Y . If y P Y zB,
then the statement is clear, so we may assume that y P B. Consider the category E of
triples pX,A,Cq where X is a smooth complex analytic variety, A is a compact analytic
subset, and C is an sncd. A morphism π : pX1, A1, C1q Ñ pX2, A2, C2q in this category
is a morphism of complex analytic spaces π : X1 Ñ X2 such that π : X1 Ñ πpX1q is
proper, πpX1q is an open neighborhood of A2, π

´1pC2q “ C1, π
´1pA2q “ A1, π|X1zC1 :

X1zC1 Ñ πpX1qzC2 is an isomorphism. Let D denote the category of objects of E over
pY, y, Bq. Let DbpCq denote the bounded derived category of complex vector spaces. Let

F : D Ñ DbpCq denote the functor which sends a triple pY 1, A1, C 1q
f
ÝÑ pY, y, Bq over

pY, y, Bq to the object Rf˚Ω
p
Y 1plogC 1qy. Consider now the set S1 of morphisms in D

given by blow-ups along smooth subvariety C 1 that has normal crossings with C 1. More
precisely, given a triple pY 1, A1, C 1q we consider morphisms obtained by blowing up along
a smooth subvariety of C 1 that has normal crossings with C 1. Given a triple pX,A,Cq P D
and an open subset U Ă X containing A, we may restrict everything to U and obtain a
morphism pU,A,C X Uq ãÑ pX,A,Cq P D. Let S2 be the set of such morphisms. Finally,
let S denote the set of morphisms obtained by composing morphisms in S1 and S2. We
note that for morphisms in f P S, F pfq is an isomorphism. This is clear for morphisms in
S2, and for f P S1 it is a consequence of Theorem 3.3 (1). Note that given a morphism of
triples f P D, we may find a morphism g such that fg exists and fg P S. The existence of
such a g follows from Hironaka’s elimination of indeterminacies ([8], Section 7, Chapter 1).
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Let h be a morphism in D such that gh P S. Now F pfgq and F pghq are both isomorphisms
and, therefore by the previous lemma that F pfq is also an isomorphism.

□

4. Preliminaries on Resolutions of Singularities

In this section, we recall some standard results from the theory of resolutions of singulari-
ties in a form convenient for our applications. We begin with some definitions of categories
of triples.

Definition 4.1. (i) Let T denote the category whose objects are triples pX,A,Bq

such that X is a complex analytic space, B Ă X is a closed complex-analytic
subspace such that XzB is smooth, and A is a compact subset (not necessarily
analytic) of X. A morphism f : pX 1, A1, B1q Ñ pX,A,Bq in T is a morphism of
complex analytic varieties f : X 1 Ñ X such that fpA1q Ă A and fpX 1zB1q Ă XzB.

(ii) Let GT denote the full-subcategory of T consisting of triples pX,A,Bq such that
X is smooth and B is a simple normal crossings divisor in X. We shall refer to
such triples as good triples.

(iii) Let T 1 denote the full subcategory of T consisting of triples pX,A,Bq such that A
is a complex analytic sub-variety which is also a complete algebraic variety such
that AzB is smooth.1

(iv) Let GT 1 denote the full subcategory of T whose objects are triples pX,A,Bq that
lie in both GT and T 1, and satisfy the following two additional conditions:
(1) A X B is the union of irreducible components of B
(2) B has normal crossings with A1, where A1 is the closure of AzB in X. We shall
refer to such triples as very good triples.

Remark 4.2. Given any triple pX,A,Bq we can consider the triple, pĘXzB,AX ĘXzB,BX

pĘXzBq. The invariants we consider in the sequel remain unchanged under this modifica-
tion of triples. In particular, we shall often replace our original triple by this modified
one.

We shall now define some classes of morphisms in the previously defined categories.

Definition 4.3. (i) For every triple pX,A,Bq P T and an open neighborhood UpAq

of A in X, one has an induced object pUpAq, A, UpAq X Bq P T and an induced
morphism j : pUpAq, A, UpAq XBq Ñ pX,A,Bq. Let S1 denote the set of all such
morphisms j. Note that if pX,A,Bq P GT is good, then so is pUpAq, A, UpAq XBq

and j is a morphism in GT . We let GS1 denote the analogous set of such morphism
in GT .

1More precisely, there exists a complete algebraic variety Z such that A and Zan are isomorphic as
complex analytic spaces.
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(ii) Let pX,A,Bq P T be a triple and let I Ă OX be a coherent sheaf of ideals such
that the support of OX{I is reduced, and is a smooth closed analytic subvariety
C contained in B. Let f : X 1 Ñ X be the blow-up of I. Then one has an
induced morphism of triples pX 1, f´1pAq, f´1pBqq Ñ pX,A,Bq. Let S2 denote the
collection of morphisms obtained in this manner. Note that any f : pX 1, A1, B1q Ñ

pX,A,Bq in S2 restricts to an isomorphism X 1zB1 Ñ XzB.
(iii) Let pX,A,Bq P GT be a good triple and let I Ă OX be a coherent sheaf of ideals

such that the support of OX{I is a reduced smooth closed analytic subvariety C
contained in B, such that C has normal crossings with B in the sense of Hironaka
(see section 3). In particular, C is smooth though not necessarily connected.
Let f : X 1 Ñ X be the blow-up of I. Then one has an induced morphism of
good triples pX 1, f´1pAq, f´1pBqq Ñ pX,A,Bq. Let GS2 denote the collection of
morphisms obtained in this manner. Note that any f : pX 1, A1, B1q Ñ pX,A,Bq

in GS2 restricts to an isomorphism X 1zB1 Ñ XzB.
(iV) Let S denote the morphisms generated by compositions of elements of S1 and S2,

and similarly for GS.

Remark 4.4. If f : pX 1, A1, B1q Ñ pX,A,Bq is a morphism in S, then the image of f is an
open neighborhood of A, f´1pBq “ B1, the induced map f : X 1 Ñ fpX 1q is proper, and f
induces a biholomorphic map X 1zB1 Ñ fpX 1qzB. A similar remark applies to morphisms
in GS.

Proposition 4.5. With notation as above:

(1) Given pX,A,Bq P T , there is a good triple pX 1, A1, B1q P GT and a morphism
f : pX 1, A1, B1q Ñ pX,A,Bq such that f P S.

(2) Given another morphism from a good triple g : pX2, A2, B2q Ñ pX,A,Bq as in (1)
above, there is a good triple pX3, A3, B3q and a commutative diagram

pX3, A3, B3q

f1

((
g1

vv

pX2, A2, B2q

g

((

pX 1, A1, B1q

fvv

pX,A,Bq

such that
(i) The image of f1 (resp. g1) is an open neighborhood of A1 (resp. A2) and f1

(resp. g1) induces a proper biholomorphic map X3zB3 Ñ f1pX
3qzB1 (resp.

X3zB3 Ñ g1pX
3qzB2).

(ii) g1 is in GS (see Definition 4.3).
(3) For every triple pX,A,Bq P T 1, there is morphism f : pX 1, A1, B1q Ñ pX,A,Bq

such that f P S and pX,A1, B1q is a very good triple.
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(4) Given another g : pX2, A2, B2q Ñ pX,A,Bq as in Part (3), there is a very good
triple pX3, A3, B3q and a commutative diagram

pX3, A3, B3q

f1

((
g1

vv

pX2, A2, B2q

g

((

pX 1, A1, B1q

fvv

pX,A,Bq

such that f1, g1 satisfy the properties analogous to f as specified in Part (1).

Proof. (1) This is a direct application of the the canonical desingularization theorem
([14], Theorem 3.8.1, p. 41). Let pX,A,Bq be an object of T . Then the canonical
desingularization theorem ([14], Theorem 3.8.1, p. 41) yields a desingularization
X 1 Ñ U (where U is a neighborhood of A in X) such that f´1Bred is a simple
normal crossings divisor. Moreover, the morphism pX 1, f´1A, f´1Bq Ñ pU,A,BX

Uq is the composite of morphisms ui with each ui P S2. This proves the first part.
(2) First note that T has fiber products. Namely, given morphisms of triples fi :

pXi, Ai, Biq Ñ pX,A,Bq for i “ 1, 2, the triple

pX1 ˆX X2, A1 ˆX A2, pB1 ˆX X2q Y pB1 ˆX X2qq

is the fiber product. Let pX3, A3, B3q :“ pX2, A1, B1q ˆpX,A,Bq pX 1, A1, B1q. Note
that the natural projection maps h : pX3, A3, B3q Ñ pX2, A2, B2q and l : pX3, A3, B3q Ñ

pX 1, A1, B1q are in S (being the base change of such maps). Therefore, it is
enough to show that there is a good triple pX3, A3, B3q and a morphism F :
pX3, A3, B3q Ñ pX3, A3, B3q such that g1 :“ h ˝ F P GS. Then we can take
f1 :“ l ˝ F . Note that h P S, and we may in reduce to the case that h P S1

or h P S2 (by iterating the above procedure). If f P S1, then the fiber product
is already a good triple and there is nothing to prove. So suppose that h P S2

and, in particular, X3 is given by the blow-up of an ideal I Ă OX2 such that
supppOX2{Iq Ă B2. Since A2 is compact, we may apply ‘resolution of marked
ideals’ ([14], Theorem 3.5.1, p. 40) to obtain:
(1) a neighborhood U of A2 in X2,
(2) a sequence of morphisms g1, . . . , gm P GS2 such that the composite g “

g1 ˝ g2 ˝ ¨ ¨ ¨ ˝ gm is defined with domain pX3, A3, B3q and target pU,A2, B2 X Uq

(3) a morphism F : pX3, A3, B3q Ñ pX3, A3, B3q P T such that h ˝ F “ g ˝ j
where j : pU,A2, B2 X Uq ãÑ pX3, A3, B2q is the inclusion.
It follows that g ˝ j P GA.

(3) We construct the required f as follows:
Step 1: We may desingularize X by blowing up in B ([14], 3.8.1; [9], 3.36 and
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3.43). The resulting map f will be in S 1.
Step 2: We apply principalization ([14], 3.6.1) to the product of the ideals of B
and B X A. Here we only need to blow-up within B. We obtain a new triple
pX,A,Bq where X is smooth, B is a s.n.c.d. and AXB is a s.n.c.d. contained in
B.
Step 3: We apply embedded desingularization ([14], 3.7.1) to A Y B. Here we
only blow-up on a center contained in A X B. The exceptional divisor E of the
blow-up is a s.n.c.d. and the strict transform of AYB (which is the union of the
strict transforms A1 and B1) is smooth, and has simple normal crossings with the
closure of A1zB1.

(4) This follows from the previous part by taking fiber products.
□

5. Enriched Hodge structures on thickenings

The main goal of this section is to give a construction of a mixed Hodge structure, which
is enhanced to an Enriched Hodge structure, on certain complex analytic ‘thickenings’
(see Remark 5.2 below for what we mean by thickenings). In the next section, we shall
give some relations between these constructions and the K-theory of convergent power
series rings.

5.1. Enriched Hodge structure on triples: Statement of main theorem.
Let X denote a complex analytic variety and let A,B denote two closed subvarieties
such that XzB is smooth, A is a complete algebraic variety, and SingpAq Ă B (i.e.
pX,A,Bq P T 1). The main goal of this section is to prove the following theorem. In the
following, let i : A ãÑ X and j : XzB ãÑ X denote the natural inclusions and consider

lim
ÝÑ

Hm
pUzBq – Hm

pA, i´1Rj˚Zq.

Here the limit is over open (in the complex analytic topology) neighborhoods U of A.

Remark 5.2. Note that the we are really concerned with the system of open neighbor-
hoods U of A in X, which are the “complex analytic thickenings” referred to in the title.
In particular, we view any specific triple pX,A,Bq as a representative of a “germ” of
neighborhoods of A.

Theorem 5.3. Let pX,A,Bq be as above.

(1) Then HmpA, i´1Rj˚Zq has a natural (in triples) mixed Hodge structure.
(2) There is a naturally defined object EHmppX,A,Bq,Zq in the category EHS of En-

riched Hodge Structures whose underlying mixed Hodge structure is the one given
by (1) on HmpA, i´1Rj˚Zq

(3) (Functoriality) Given a morphism of triples f : pX,A,Bq Ñ pX 1, A1, B1q P T 1, the
induced map

EHm
ppX 1, A1, B1

q,Zq Ñ EHm
ppX,A,Bq,Zq

is a morphism of enriched Hodge structures.
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The theorem will be proved in several steps by first considering some settings where the
triples pX,A,Bq satisfy some stronger hypotheses than those of the theorem. Before
beginning the proof, we briefly outline the strategy.

Definition 5.4. (1) A triple pX,A,Bq P T 1 is of type pH1q if X is smooth, B is a
s.n.c.d and A is the intersection of some components of B. Note that in this case
A is smooth.

(2) A triple pX,A,Bq P T 1 is of type pH2q if X is smooth, B is a s.n.c.d, A is not
contained in any component of B and B has normal crossings with A. Note that
this implies that A is smooth.

(3) A triple pX,A,Bq P T 1 is of type pH3q ifX is smooth, B is a s.n.c.d and A “ A1YA2

where such that A1 is a union of components of B, A2 is not contained in any
component of B and B has normal crossings with A2. Note that this implies that
A2 is smooth.

We will first prove Theorem 5.3 for triples of type pH1q. The construction of the mixed
Hodge structure in this case is essentially due to Hain-Durfee ([6]). We use here the con-
struction of Peters-Steenbrink ([11]); this construction will also yield the enhancement to
EHS. The case pH2q will follow directly from classical Hodge theory, since in this case B
restricts to a s.n.c.d on A and one is simply looking at the cohomology of AzB (note A
is smooth proper). The EHS will be that determined by the functor s applied to the MHS.

The case of triples of type pH3q will then follow by replacing A in that case by the
associated simplicial scheme A¨ given by the irreducible components of A. The n-th
component of that simplicial scheme is a disjoint union of intersections of the components
of A, each of which has a natural associated triple of type pH1q or pH2q. Finally, the
general case will be reduced to the case of triples of type pH3q using the resolution of
singularities results of the previous section.

5.5. (Triples of type pH1q) We begin by considering the special case of Theorem 5.3
where pX,A,Bq is a triple of type pH1q. Note that A must be smooth in this case. Given
such a triple, we can consider the log complex Ω‚

XplogBq. This complex is equipped with
the usual weight filtration W and Hodge filtration F defined by Deligne. In particular,
the restriction i´1Ω‚

XplogBq also comes equipped with filtrations W and F . On the other
hand, it follows from ([11], 6.11) that, if IA is the ideal of A, then IAΩ‚plogBq is a sub-
complex of Ω‚

XplogBq. It follows that i˚Ω‚
XplogBq :“ Ω‚

XplogBq b OA is a complex on A
and we have a surjective map of bifiltered complexes on A:

pi´1Ω‚
XplogBq,W, F q Ñ pi˚Ω‚

XplogBq,W, F q.

Here the filtrations W and F on the image are by definition the image filtrations. Note
that the image filtration F on the right hand term is the same as the intrinsically defined
Hodge filtration on the right hand term. Moreover, by ([11], 6.12), the map of filtered
complexes

pi´1Ω‚
XplogBq,W q Ñ pi˚Ω‚

XplogBq,W q
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is a filtered quasi-isomorphism.

Remark 5.6. In loc. cit. this quasi-isomorphism is only stated in the setting where
X and B are algebraic varieties. However, the proof only makes use of residue exact
sequences and goes through in our setting without change.

Note that this implies in particular that the complex on the RHS is quasi-isomorphic to
pi´1Rj˚C, τq. This is since Deligne’s theory already gives an isomorphism in the derived
filtered category:

pi´1Rj˚C, τq Ñ pi´1Ω‚
XplogBq,W q

We note that this quasi-isomorphism can be represented by a diagram of actual mor-
phisms by choosing the canonical representative for Rj˚Z (and other derived complexes)
given by the Godement resolution (see 7.13). In particular, it can be given by a pseudo-
morphism (see 7.11) by restricting to A the following diagram of actual morphisms of
filtered complexes:

pRj˚C, τq Ñ pRj˚Ω
‚
XzB, τq Ð pj˚Ω

‚
XzB, τq Ð pΩ‚

XplogBq, τq Ñ pΩ‚
XplogBq,W q.

Furthermore, one has the following description of the weight graded pieces of i˚Ω‚
XplogBq.

Suppose B “ B1 Y ¨ ¨ ¨ Y Bk and BI :“ XiPIBi where I Ă t1, . . . , ku. Then the residue
map induces an isomorphism:

GrWk pi˚Ω‚
XplogBq – ‘|I|“kΩ

‚
BIXAr´ks

It follows that the data pi´1Rj˚Z, pi´1Rj˚Q, τq, pi˚Ω‚
XplogBq,W, F qq gives rise to a (gen-

uine) cohomological mixed Hodge complex. Moreover, it is easy to see that this data is
functorial for a morphism of triples f : pX,A,Bq Ñ pX 1, A1, B1q of type pH1q such that
fpAq Ă A1, f´1pB1q Ă B, and f´1pB1q is also a s.n.c.d. Finally, it is also clear that we can
upgrade this to a cohomological enriched Hodge complex by considering the quadruple:

pi´1Rj˚Z, pi´1Rj˚Q, τq, pi˚Ω‚
XplogBq,W, F q, pi´1Ω‚

XplogBq, F qq

In particular, one has the following result:

Theorem 5.7. Let pX,A,Bq be a triple of type pH1q. Then the data

pi´1Rj˚Z, pi´1Rj˚Q, τq, pi˚Ω‚
XplogBq,W, F q, pi´1Ω‚

XplogBq, F qq

gives rise to a (genuine) cohomological enriched Hodge complex on A. Moreover, it is
functorial for a morphism of triples f : pX,A,Bq Ñ pX 1, A1, B1q of type pH1q such that
f´1pB1q is a s.n.c.d. In particular, Theorem 5.3 is true for such triples.

Remark 5.8. By definition of the weight filtration, one has for triples of type pH1q:

WkHk
pA, i´1Rj˚Qq “ ImagepHk

pA,Qq Ñ Hk
pA, i´1Rj˚Qqq.

Remark 5.9. There is an alternate approach to proving Theorem 5.7 which is also some-
times useful. Namely, consider the normal bundle p : NAX Ñ A and let s : A Ñ NAX
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denote the zero section. Then Z :“ p´1pDq Y spAq is a s.n.c.d. on NAX where D is the
restriction of B to A. One can show that there is a natural filtered quasi-isomorphism

ps´1Ω‚
NAX

plogZq,W q Ñ pi´1Ω‚
XplogBq,W q.

One then notes that the left hand side is completely algebraic since A was assumed to
be algebraic. In particular, one can now apply Deligne’s mixed Hodge theory to obtain a
mixed Hodge structure.

5.10. (Triples of type pH2q) Let pX,A,Bq denote a triple of type pH2q. In this
case, the restriction of B to A, denoted B|A, is a simple normal crossings divisor on A.
Moreover, the complex i´1Ω‚

XplogBq is naturally quasi-isomorphic to Ω‚
AplogB|Aq (with

the weight filtration). It follows that the quadruple

pi´1Rj˚Z, pi´1Rj˚Q, τq, pΩ‚
AplogB|Aq,W, F q, pi´1Ω‚

XplogBq, F qq

gives rise to a (genuine) cohomological enriched Hodge complex on A. Moreover, these
are functorial in morphisms of triples f : pX,A,Bq Ñ pX 1, A1, B1q of type pH2q such that
f´1pB1q is an s.n.c.d. In particular, we have the following:

Theorem 5.11. Let pX,A,Bq be a triple of type pH2q. Then the data

pi´1Rj˚Z, pi´1Rj˚Q, τq, pΩ‚
AplogB|Aq,W, F q, pi´1Ω‚

XplogBq, F qq

gives rise to a (genuine) cohomological enriched Hodge complex on A. Moreover, it is
functorial for a morphism of triples f : pX,A,Bq Ñ pX 1, A1, B1q of type pH2q such that
f´1pB1q is a s.n.c.d. In particular, Theorem 5.3 is true for such triples.

Before proceeding, we note that the functoriality statements in the previous theorems can
be extended.

Lemma 5.12. Let f : pX 1, A1, B1q Ñ pX,A,Bq be a morphism of triples where the domain
is of type (H1) and the range is of type (H2) and f

´1pBq is an s.n.c.d. Then one has an
induced morphism of the corresponding cohomological enriched Hodge complexes.

Proof. Since log de Rham complexes are functorial for such morphisms, the functoriality
of the enriched part of the enriched Hodge complex is clear. Moreover, it is also not hard
to see that the integral part and the rational part with the corresponding weight filtration
is also functorial. Therefore we are reduced to showing that there is a natural morphism
of filtered complexes:

f´1Ω‚
AplogB|Aq Ñ Ω‚

X 1plogB1
q b OA1 .

On the other hand, one has natural maps:

f´1
pi´1Ω‚

XplogBqq Ñ i´1Ω‚
X 1plogB1

q Ñ Ω‚
X 1plogB1

q b OA1 ,

where the first map results from the aforementioned functoriality. All the complexes
in this diagram are equipped with the Hodge filtration, and the first map is clearly a
morphism of filtered complexes. Moreover, the discussion in the beginning of 5.5 shows
that the second map is also a map of filtered complexes. Finally, the discussion above
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shows that i´1Ω‚
XplogBq is naturally quasi-isomorphic (as a bifiltered complex with both

weight and Hodge filtration) to Ω‚
AplogB|Aq. □

5.13. (Triples of type pH3q) Suppose now that we are given a triple pX,A,Bq of type
pH3q. In particular, A “ A1 Y A2 where A1 is a union of components of B, B has normal
crossings with A2, and A2 is not contained in any component of B. Let A1 “ Yk

i“1Ai
where Ai are the irreducible components of A1, and each Ai is a component of B. In
the following, we let A0 :“ A2. In this case, note that each pX,Ai, Bq is a triple of
type pH1q for 1 ď i ď k and of type pH2q for i “ 0. Moreover, each triple pX,Aij, Bq

(where Aij :“ Ai X Aj) is again of type pH1q if i, j ‰ 0. On the other hand, consider the
triple pX,A0j, Bq where j ‰ 0. In this case, this triple is not in general of type pH1q or
pH2q. However, the triple pA0, A0j, B|A0q is again of type pH1q. Moreover, the following
lemma shows that the natural morphism of triples pA0, A0j, B|A0q Ñ pX,A0j, Bq induces
an isomorphism on cohomology.

Lemma 5.14. Let pX,A,Bq be a triple of type pH2q, B
1 an intersection of components

of B, and A1 :“ AXB1. Let i : A1 ãÑ A, j : AzB|A ãÑ A, ĩ : A1 ãÑ X, and j̃ : XzB ãÑ X,
denote the natural inclusions. The induced morphism

ĩ´1Rj̃˚Z Ñ i´1Rj˚Z
is an isomorphism (in the derived category). In particular, it induces an isomorphism

Hi
pA1, ĩ´1Rj̃˚Zq Ñ Hi

pA1, i´1Rj˚Zq.

Since pA,A1, B|Aq is a triple of type pH1q, it follows that HipA1, i´1Rj˚Zq has a canonical
enriched Hodge structure.

Proof. First, consider the cartesian square:

AzB|A //

j
��

XzB

j̃
��

A
iA

// X

We first note that, since A has normal crossings with B, the natural base change morphism

i´1
A Rj̃˚Z Ñ Rj˚Z

is an isomorphism. For example, this can be checked locally, and therefore we are reduced
to where X is a poly-disk. Moreover, if px1, ¨ ¨ ¨ , xnq denote the coordinates on X, then A
is given by tx1 “ 0, . . . , xi “ 0u, B is given by txj ¨ ¨ ¨ xk “ 0u and j ą i (since A is not con-
tained in any component of B). In this case, the result is a restatement of cohomological
purity. To be more precise, if we write X “ D1 ˆ ¨ ¨ ¨ ˆDn where Di is the disk with coor-
dinate xi, then A “ Di`1 ˆ ¨ ¨ ¨ ˆDn and one has H0pXzB,Zq “ Z,H1pXzB,Zq “ Zk´j`1,
and HjpXzB,Zq – ΛjH1pXzB,Zq. One has the same computation for H˚pAzB|A,Zq.
Note that these cohomology groups are the stalks (at a point of A) of the sheaves ap-
pearing in the base change morphism above. Finally, applying i´1 to the aforementioned
isomorphism gives the desired result.
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□

We will now construct a simplicial ‘triple’ computing the cohomology of a triple of type
pH3q whose n-th term is built from triples of type pH1q and pH2q. Let A‚ denote the
simplicial scheme given by the components of A. In particular, A0 :“

š

iAi. In general,
An is the disjoint union of terms Ai0¨¨¨in :“ Ai0 X ¨ ¨ ¨ X Ain . The natural augmentation
π : A‚ Ñ A is a proper hypercover. Moreover, each term Ai0¨¨¨in can be viewed as de-
termining a triple pX,Ai0¨¨¨in , Bq, and the pull back (induced by the natural inclusion
Ai0¨¨¨in ãÑ A) of the complex i´1Rj˚Z to each such term is the corresponding complex on
the triple pX,Ai0¨¨¨in , Bq. Therefore, by cohomological descent, it’s enough to upgrade the
complex i´1Rj˚Z on Ai0¨¨¨in corresponding to the triple pX,Ai0¨¨¨in , Bq to a cohomological
enriched Hodge complex, and to note that these assemble to give a complex of sheaves on
the simplicial scheme. An application of Lemma 7.16 will then show that the resulting
total complex will have the structure of an cohomological enriched Hodge complex, and
therefore its hypercohomology groups will have natural enriched Hodge structures.

For a given Ai0¨¨¨in if ij ‰ 0 for all 0 ď j ď n, then pX,Ai0¨¨¨in , Bq is a triple of type pH1q.
On the other hand, if ij “ 0 for some j, then an application of the previous lemma still
allows us to obtain a natural cohomological enriched Hodge complex by considered the
associated triple of type pH2q. For example, we may assume that i0 “ 0 and that all
other ij ‰ 0. Then we can consider the associated triple pAi0 , Ai0¨¨¨in , B|Ai0

q, and note
that this is a triple of type pH1q. We have constructed a mixed Hodge complex on this
triple. As for the enriched part, we shall take complex i´1Ω‚

XplogBq where i : Ai0¨¨¨in ãÑ X
is a natural embedding. The previous lemma shows that this results in a cohomological
enriched Hodge complex onAn, and the functoriality of the constructions of cohomological
enriched Hodge complexes shows that these assemble to give a cohomological enriched
Hodge complex on the simplicial scheme. Note that the face and degeneracy maps (on
each component of Xn) either have same type triples as domain and range or have a type
pH1q triple mapping to one of type pH2q. In particular, the aforementioned ‘functorialities’
are sufficient for the construction of the desired cohomological enriched Hodge complex
on the simplicial scheme A‚. In particular, one has the following theorem.

Theorem 5.15. Let pX,A,Bq be a triple of type pH3q. Then there is a natural mixed
Hodge structure on HmpA, i´1Rj˚Zq and an enriched Hodge structure EHmppX,A,Bq,Zq

with underlying MHS given by the aforementioned MHS on HmpA, i´1Rj˚Zq such that:

(1) (Functoriality) Given a morphism of triples f : pX,A,Bq Ñ pX 1, A1, B1q of type
pH3q such that f´1pB1q is a s.n.c.d., the induced map

EHm
ppX 1, A1, B1

q,Zq Ñ EHm
ppX,A,Bq,Zq

is a morphism of enriched Hodge structures.
(2) If there exist open sets U Ą A and U 1 Ą A1 such that f restricts to an isomorphism

UzB Ñ U 1zB1, then the morphism from part (1) is an isomorphism of mixed Hodge
structures.
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(3) The object of C associated to EHmppX,A,Bq,Zq is given by the following diagram
in C:

¨ ¨ ¨ Ñ Hm
pA, i´1Ωăp

X plogBqq Ñ Hm
pA, i´1Ωăp´1

X plogBqq Ñ ¨ ¨ ¨

Proof. As noted above, the existence part follows from the preceding construction and
an application of Lemma 7.16. We note that the ‘enriched part’ is simply the restriction
to each of the components Ai0¨¨¨in of the (filtered by usual Hodge filtration) complexes
pΩ¨

XplogBq, F q.

(1) Suppose we are given a morphism of triples of type pH3q as in the Theorem. Then
for each component Ai of A there is a component A1

jpiq of A1 such that f maps

Ai to A
1
jpiq. Note, there may be more than one choice for such a A1

jpiq, but we
fix one choice here. This gives rise to a map of the associated simplicial schemes
f¨ : A‚ Ñ A1

‚ which is compatible with f under the augmentation maps. It follows
immediately that the induced map on cohomology

f : Hm
pA1, i

1´1Rj1
˚Zq Ñ Hm

pA, i´1Rj˚Zq

is a morphism of mixed Hodge structures, and moreover compatible with the un-
derlying enriched structure (by the remark regarding the enriched part at the
beginning of the proof) .

(2) One can argue as before (i.e. as a consequence of Deligne’s mixed Hodge theory)
since the induced map on the underlying abelian groups is an isomorphism.

(3) This follows from the definition of the ‘enriched part’.

□

Remark 5.16. Let pX,A,Bq P T 1 be a triple, and suppose A “ Yk
i“1Ai where Ai are the

irreducible components of A. We note that the constructions of this paragraph can be
applied to any such triple where the intersections of the components of A are type pH1q

or pH2q. In particular, the analog of Theorem 5.15 holds in this case as well.

5.17. ( Proof of Theorem 5.3) We shall now complete the proof of Theorem 5.3. We
shall proceed in several steps.

(1) (Existence of EHS) Let pX,A,Bq P T 1. Then by Proposition 4.5 and Remark 4.4,
there is a triple pX 1, A1, B1q of type (H3) and a birational morphism of triples

π : pX 1, A1, B1
q Ñ pX,A,Bq

such that A1 (resp. B1) is the total transform of A (resp. B), πX 1zB1 : X 1zB1 Ñ

fpXqzB is an isomorphism, and fpX 1q is an open neighborhood of A. As a result,
the induced map on cohomology

Hm
pA1, i

1´1Rj1
˚Zq Ñ Hm

pA, i´1Rj˚Zq
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is an isomorphism. We define the enriched Hodge structure on the RHS to be the
one given by Theorem 5.15 on the LHS.

(2) (Independence of choices of MHS) Suppose we have triples pXi, Ai, Biq, i “ 1, 2,
each of type pH3q over the triple pX,A,Bq. By Proposition 4.5, there exists a
diagram

pX3, A3, B3q //

��

pX1, A1, B1q

��

pX2, A2, B2q // pX,A,Bq

where pX3, A3, B3q P GT 1 and the induced morphism of triples

pX3, A3, B3q
f
ÝÑ pX,A,Bq

is an isomorphism over fpX3qzB. Therefore, we may assume that we have a mor-
phism of triples g : pX2, A2, B2q Ñ pX1, A1, B1q over pX,A,Bq (which is birational
and an isomorphism over gpX2qzB1, and gpX2q is an open neighborhood of A1) ,
and in that situation, we want to show that g induces an isomorphism of mixed
Hodge structures. Since g induces a morphism mixed Hodge structures and an
isomorphism on the underlying cohomology groups, it must be an isomorphism of
mixed Hodge structures.

(3) (Independence of choices of EHS) We continue with notation as above. It remains
to show g induces an isomorphism of enriched Hodge structures. Note that we may
assume that g P GS. Given a triple pX,A,Bq as above, let Hi

CpX,A,Bq denote
the image in C of the enriched Hodge structure defined above. Recall, a morphism
in GS is a composition of morphisms in GS1 and GS2. For morphisms in GS2,
the induced morphism on the corresponding objects of C is an isomorphism by
Corollary 3.6, and the analogous statement for morphisms in GS1 is clear.

(4) (Functoriality:) Let f : pX1, A1, B1q Ñ pX2, A2, B2q P T 1 be a morphism of triples
and g2 : pX 1

2, A
1
2, B

1
2q Ñ pX2, A2, B2q be a triple of type (H3) over pX2, A2, B2q

which is an isomorphism over g2pX 1
2qzB2. Arguing as before, there is a triple of

type (H3) pX 1
1, A11 , B1

1q and a commutative diagram:

pX 1
1, A11 , B1

1q
f 1

//

g1
��

pX 1
2, A

1
2, B

1
2q

g2
��

pX1, A1, B1q
f
// pX2, A2, B2q

where gi P S. The result now follows from the functoriality for triples of type
(H3).
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6. Future directions/projects

Here we will give an outline of certain applications of the machinery which has been de-
veloped in this article, which we expect to develop in a subsequent work.

As before, let pX,A,Bq be a triple where X is a complex analytic space and A,B are
closed analytic subvarieties of X such that A is a proper algebraic variety, and XzB, AzB
are both non-singular. Recall, we are concerned with the system of open neighbourhoods
of A in X and we view any specific triple pX,A,Bq as a representative of a “germ” of
neighborhoods of A.

By the Main Theorem, associated to such a triple we have enriched Hodge structures
EHm

ppX,A,Bq,Zq corresponding to natural mixed Hodge structures on the cohomology
groups HmpX, i´1Rj˚ZXzBq, m ě 0 (and their Tate twists). If X is smooth and B is an
s.n.c.d., then the object of C associated to this EHS results by considering the hyperco-
homology of the (truncated) logarithmic de Rham complex on the ambient space X with
log poles along B. For a general triple, the Main Theorem yields that, if we replace this
triple by suitably blowing up within B to obtain a new triple with the extra smoothness
and s.n.c.d. conditions, the resulting EHS is independent of that choice.

Our construction of the EHS, and the underlying MHS is in fact via a construction of
a suitable cohomological Enriched Hodge complex (a natural generalization of a coho-
mological Mixed Hodge complex). As a result, this allows us to construct, via a map-
ping cone construction, a version of Deligne-Beilinson cohomology, which we call En-
riched Deligne-Beilinson cohomology groups, with appropriate Tate twists, and denote by
EDBippX,A,Bq,Zpjqq in the following. By construction, these which will then fit into
short exact sequences

0 Ñ Ext1EHSpZ,EHi´1
ppX,A,Bq,Zpjqq Ñ EDBippX,A,Bq,Zpjqq Ñ

HomEHSpZ,EHi
pXpX,A,Bq,Zpjqq Ñ 0

(for various indices i, jq.
We indicate briefly the construction of EDB cohomology. Let pX,A,Bq be a triple of
type pH3q. Recall, in this case the object of C associated with EHi

ppX,A,Bq,Zq results
by considering the complex i´1Ω‚

XplogBq. The construction of EDB cohomology in this
setting parallels that of the definition of Deligne-Beilinson cohomology in the open setting.
More precisely, one has the natural morphisms

ι : Ωěp
X plogBq Ñ Ω‚

XplogBqq

and

ϵ : Rj˚Zppq Ñ Ω‚
XplogBq
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in the derived category of complexes of sheaves. Consider the cone of the resulting mor-
phism restricted to A:

Cppq :“ Conepi´1Rj˚Zppq ‘ i´1Ωěp
X plogBq

ϵ´ι
ÝÝÑ i´1Ω‚

XplogBqq,

and set EDBippX,A,Bq,Zpjqq :“ HipA,Cppqq. By definition, one obtains a long exact
sequence:

¨ ¨ ¨ Ñ EDBippX,A,Bq,Zppqq Ñ Hi
pA, i´1Rj˚Zppqq Ñ Hi

pA, i´1Rj˚Cq{F p
Ñ ¨ ¨ ¨ .

Here F p is the filtration induced by the filtration Ωěp
X plogBq on hypercohomology. For

an arbitrary triple, one proceeds by replacing it with a triple of type pH3q as in the con-
struction of EHS.

This is formally very similar to the construction of Deligne-Beilinson cohomology. We
note however that the Ext1EHS groups contain vector spaces, which are in general infinite
dimensional. For example, consider the triple pX,A,Bq “ pCn, t0u,Hq. Then the sections
of the structure sheaf OX , when we then pass to the direct limit over neighbourhoods of
A “ t0u, yields the ring of convergent power series in n complex variables. While the
corresponding, MHS will be more or less trivial (since A is a point), the EHS will involve
terms of the de Rham complex of the ring of convergent power series.

The next step is to consider certain algebraic K-groups which can be associated to a
triple pX,A,Bq (which we as usual view as a representative for the “germ” of A in
X), denoted by KippX,A,Bqq, and defined as follows. Consider the abelian category of
coherent analytic sheaves on X, which contains the Serre subcategory of coherent sheaves
supported on B (equivalently, which have vanishing stalk at any point of XzB). The
quotient abelian category has a full exact subcategory consisting of objects obtained from
coherent sheaves on X which are locally free when restricted to XzB. Let PpX,Bq denote
the exact category obtained by this construction for a representative triple pX,A,Bq. We
then define

KippX,A,Bqq “ lim
ÝÑ

AĂUĂX

KipPpU,U X Bqq,

where the Ki denote the Quillen K-groups of an exact category (and the limit is over all
open neighborhoods of A in X).

One can also use the Waldhausen framework in order to define the K-groups of a triple. In
particular, for a representative triple pX,A,Bq, consider the bounded derived category of
coherent analytic sheaves on X, with its usual Waldhausen structure. This contains the
full triangulated subcategory DpX,Bq of complexes which restrict to a perfect complex
on XzB; this in turn has a thick subcategory DBpXq of complexes with cohomology
supported in B. Then we may take

KippX,A,Bqq “ lim
ÝÑ

AĂUĂX

KipDpU,U X Bq{DUXBpUqq.
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It seems likely that there is a canonical identification between the groups KippX,A,Bqq

given by either of the definitions; we thank Amnon Neeman for a suggestion about
how to go about establishing this. We will assume this is the case, and use the no-
tation KippX,A,Bqq to be the resulting groups. These will be contravariantly func-
torial for maps of triples f : pX 1, A1, Bq1 Ñ pX,A,Bq, which we take to be complex
analytic maps f : X 1 Ñ X (for suitable representatives) such that fpA1q Ă A, and
f´1pBq Ă B1 (so that we have an induced restriction X 1zB1 Ñ XzB). We note also
that the EHr

ppX,A,Bq,Zpsqq are also contravariant functorial for the same morphisms of
triples, as seen earlier.

Having discussed K-groups, we then expect to construct an appropriate theory of Chern
classes and Chern character (with values in enriched Deligne-Beilinson cohomology),
which exactly parallels the known constructions for such classes with domain algebraic
K-theory of varieties and with values in Deligne-Beilinson cohomology (as in [1], and ex-
plained in detail in [12]).

Thus, we expect to construct Chern class maps

ci,j : KippX,A,Bqq Ñ EDB2j´i
ppX,A,Bq,Zpjqq,

and similarly Chern character (component) maps

chi,j : KippX,A,Bqq b Q Ñ EDB2j´i
ppX,A,Bq,Qpjq,

where chi,j are homomorphisms, while ci,j are homomorphisms for i ą 0, and these satisfy
the usual relations between Chern classes and components of the Chern character. We
also expect the chi,j to factor through an appropriate weight j eigenspace for the Adams
operations, which are naturally defined on the KippX,A,Bqq. The construction, proper-
ties and computations with these classes are the main goal of this project; in particular,
we expect the Chern class maps to capture non-trivial and interesting information about
the groups KippX,A,Bqq.

We now discuss a few examples where this theory can be worked out directly by hand,
which gives the flavour of what aspects of the K-groups our EHS’s may describe. In par-
ticular, these examples show that interesting and subtle geometric features are naturally
reflected in the computation and properties of the EHS’s.

Example 6.1. Let pX,A,Bq “ pCn, t0u,Hq be the germ at the origin of Cn. We
note that if Rn is the ring of convergent power series in n complex variables (so that
Rn is the local ring Oan

Cn,0), then KippX,A,Bqq is just KipRnq.2 As is well known,

K1pRnq “ Rˆ
n . Note that, in this case, the underlying MHS HipA, i˚Zq “ HipA,Zq “ 0

for i ą 0, and Z for i “ 0. Moreover, the object of C associated to the EHS is given by

2This is a consequence of the definition of the K-theory of a triple and the fact that K-theory commutes
with direct limits of exact categories.
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Vp :“ HipRn Ñ ¨ ¨ ¨ Ñ Ωp´1
Rn

q (i.e. the truncated de Rham complex of converent power
series).

Consider the map:

(4) c1,1 : K1pRnq Ñ EDB1
ppX,A,Bq,Zp1qq.

and the exact sequence

(5) 0 Ñ Ext1EHSpZ,EH0
ppX,A,Bq,Zp1qqq Ñ EDB1

ppX,A,Bq,Zp1qq Ñ

HomEHSpZ,EH1
ppX,A,Bq,Zp1qq Ñ 0.

As an application of Proposition 2.13, one notes that

HomEHSpZ,EH1
ppX,A,Bq,Zp1qq “ 0

(since the underlying MHS is 0), and Ext1EHSpZ,EH0
ppX,A,Bq,Zp1qqq is given by the cok-

ernel of the map Z 2πi
ÝÝÑ Rn, which can be identified with the units Rˆ

n via the exponential
map.

Example 6.2. Continuing with the previous example, consider now the map:

(6) c2,2 : K2ppX,A,Bq Ñ EDB2
ppX,A,Bq,Zp2qq.

and the exact sequence

(7) 0 Ñ Ext1EHSpZ,EH1
ppX,A,Bq,Zp2qqq Ñ EDB2

ppX,A,Bq,Zp2qq Ñ

HomEHSpZ,EH2
ppX,A,Bq,Zp2qq Ñ 0.

As in the previous example,

HomEHSpZ,EH2
ppX,A,Bq,Zp2qqq “ 0

since A is a point. Since the underlying MHS of EH1ppX,A,Bq,Zp2qq “ 0, we have
that EH1

ppX,A,Bq,Zp2qq is completely determined by a sequence of C vector spaces Vj,
obtained from truncations of the de Rham complex of the germ pCn, 0q i.e. the de Rham
complex of Rn. In particular, we find that

Ext1EHSpZ,EH1
ppX,A,Bq,Zp2qq – coker

`

d : Rn Ñ Ω1
Rn

q
˘

.

Thus our map in (6) is of the form

K2pRnq Ñ coker
`

d : Rn Ñ Ω1
Rn

˘

.

Indentifying this cokernel with the germs of closed 2-forms ZΩ2
Rn

, one finds that on
Steinberg symbols tf, gu with f, g P R˚

n, we have

c2,2ptf, guq “
1

p2πiq2
dlog pfq ^ dlog pgq.

It is thus easy to see that c2,2 is surjective, and that elements of K2pRnq in the image of
C˚ b R˚

n Ñ K2pRnq lie in the kernel.
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Remark 6.3. We may compare this with a computation of Bloch [2], showing that if
Mn Ă Rn is the maximal ideal, and RnpNq “ Rn{MN

n , then

kerpK2pRnpNqq Ñ K2pCqq –
kerΩ1

RnpNq{Z Ñ Ω1
C{Z

dpMN
n q

.

Here we have the absolute Kahler differentials appearing on the right.

Example 6.4. Let p sX, sA, sBq be a representative of pC2, t0u, sCq, where sC “
Ťn
i“1

sCi are
irreducible curve germs through the origin, contained in the germ at 0 of C2. Note that
sA “ t0u. Moreover, we can and do assume that for the given representative sB “

Ťn
i“1

sBi

where sBi is a representative for the germ sCi, the sBi meet only at 0, and sBiz0 is smooth.
In general this is not a good triple, so we may perform a sequence of point blow ups at
points lying over the origin, to obtain

(1) a nonsingular complex surface X with a proper birational map π : X Ñ sX and
with an exceptional divisor E “

Ťt
l“1El, which is a union of irreducible smooth ra-

tional curves El, whose dual graph forms a tree; XzE Ñ sXzt0u is an isomorphism
of surfaces

(2) the strict transform in X of sB “ Yn
i“1

ĎBi is a disjoint union or irreducible smooth
curves

Ťn
i“1Bi, with Bi Ñ sBi being the normalization (which is bijective and

birational)
(3) the divisor B “ E `

ř

iBi has simple normal crossings, and XzB – sXz sB.

The triple pX,A,Bq with A “ E is a good triple, which may be used to compute both
the MHS and the EHS associated to p sX, sA, sBq in our Main Theorem.

We next note that the K-groups which we associate to this triple are KipRf q, where
R “ R2 is the convergent power series ring in 2 variables, and fR is the ideal of the curve
germ sC. Our goal is to make more explicit the map

c2,2 : K2pp sX, sA, sBq Ñ EDB2
pp sX, sA, sBqp2q,

which is then a map

c2,2 : K2pRf q Ñ EDB2
ppX,A,Bq,Zp2qq.

Now in the exact sequence (7) as above, the MHS associated to EHippX,A,Bq,Zq is
generally nontrivial for both of i “ 1, 2. We compute these explicitly using the geometry
of the situation. This MHS is determined, as an abelian group, by the formula

Hi
pA, i˚Rj˚Zq “ lim

ÝÑ
AĂUĂX

Hi
pUzB,Zq.

Here j : XzB ãÑ X and i : A ãÑ X are the inclusion maps. Consider the Leray spectral
sequence for j,

Er,s2 “ Hr
pX,Rsj˚Zq ñ Hr`s

pXzB,Zq,
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and then take the direct limit over U of the similar spectral sequences for the inclusions
jU : UzB Ñ U . This leads to a limiting spectral sequence

Er,s2 “ lim
ÝÑ

AĂUĂX

Hr
pU,Rsj˚Z |Uq ñ Hr`s

pA, i˚Rj˚Zq.

Since we are interested in HipA, i˚Rj˚Zq with i “ 1, 2, we want to determine Er,s8 with
r ` s “ 1, 2.

Working with this limiting spectral sequence, we first note that by the proper base change
theorem, the direct limit of the cohomology groups HrpU,Zq may be identified with
HrpE,Zq, where E “ π´1p0q is the exceptional divisor for π : X Ñ sX. This gives a
natural identification Er,02 – HrpE,Zq.

Next we compute R1j˚Z |U , which is supported on B XU . By abuse of notation we shall
denote by B the restriction B X U to U (and similarly for El, Bi, and E). Note that
for small enough U this is a simple normal crossing divisor which is the union of E and
Ťn
i“1Bi, where each Bi is isomorphic to a unit disc in C. It follows that:

R1j˚Z |U– p‘
n
i“1ZBi

q ‘ p‘
t
l“1ZEl

,

R2j˚Z |U– ‘PPSZP ,
Rsj˚Z “ 0 @ s ě 3,

where S denotes the finite set of points of B X U where pairs of components intersect
(these are special cases of the general description of Rsj˚Z where j is the inclusion of the
complement of a divisor with simple normal crossings). We note that S has cardinality
n ` t ´ 1, since the dual graph of E “

Ťt
l“1El is a tree, and the Bi are pairwise disjoint

and meet E transversally at smooth points.

From this, we obtain the following information about the limiting spectral sequence:

Er,s2 “ 0 if s ě 3, or if r ě 3, or if r ą 2,s “ 1, or if r ą 0, s “ 2

E2,0
2 – H2

pE,Zq – ‘
t
l“1H

2
pEl,Zq – Zt

E1,1
2 “ 0 (since each El – P1

C, and each Bi is isomorphic to a unit disc in C)
E0,2
2 – ‘PPSZ – Zn`t´1

E2,1
2 – ‘

t
l“1H

2
pEl,Zq – Zt

E1,0
2 “ 0 (since H1pE,Zq “ 0, from the description of E as a tree of smooth rational curves)

E0,1
2 – p‘

n
i“1H

0
pBi,Zqq ‘ p‘

t
l“1H

0
pEl,Zqq – Zn`t.

Now we consider the differentials. First note that d0,22 : E0,2
2 Ñ E2,1

2 has kernel E0,2
8 and

cokernel E2,1
8 . But H3pXzB,Zq – H3p sXz sB,Zq “ 0. Hence d0,22 is surjective, and we

conclude that
E0,2

8 – Zn´1.
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Next, consider d0,12 : E0,1
2 Ñ E2,0

2 . Here E2,0
2 – H2pE,Zq using the proper base change

isomorphism H2pU,Zq Ñ H2pE,Zq for small enough U . The differential d0,12 then is a map

p‘
n
i“1H

0
pBiZq ‘ p‘

t
l“1H

0
pEl,Zq Ñ H2

pU,Zq,

which is known to be a sum of Gysin maps H0pBi,Zq Ñ H2pU,Zq and H0pEl,Zq Ñ

H2pU,Zq associated to the inclusions Bi Ă U , El Ă U (this is part of the description
of the Leray spectral sequence for j, the inclusion of the complement of a divisor with
simple normal crossings). Then composing with the isomorphism H2pU,Zq – H2pE,Zq “

‘t
l“1H

2pEl,Zq – Zt, we see that the maps

H0
pBi,Zq Ñ ‘

t
l“1H

0
pEl,Zq

are given by 1 ÞÑ
řt
l“1pBi¨Elq, which is a vector with exactly one nonzero component equal

to 1 (since Bi meets E transversally at 1 point). Similarly on the summand H0pEl,Zq

it is determined by the intersection numbers of that El with each of the components of
E. In particular, we see that d0,12 is surjective, with kernel isomorphic to Zn, since the
intersection matrix of the components of E is a unimodular (negative definite) matrix (this
is because π : X Ñ sX has exceptional locus E supported over 0, and sX is a nonsingular
surface). Thus

E0,1
8 – Zn.

Hence we have determined that H1pA, i˚Rj˚Zq – Zn, H2pA, i˚Rj˚Zq – Zn´1. If we then
keep track more carefully of the Hodge structures, we find that in fact both these MHS’s
are pure, and we have

H1
pA, i˚Rj˚Zq – Zp´1q

n,

H2
pA, i˚Rj˚Zq – Zp´2q

n´1.

Here the Tate twists are determined by the (pure) Hodge structures on cohomology of
certain smooth proper varieties (here H0ppointq or H2pP1

Cq) and also twists arising in Gysin
maps.

Next we consider the EHippX,A,Bq,Zp2qq. For i “ 2 we find

HomEHSpZ,EH2
ppX,A,Bq,Zp2qq – Zn´1,

while for i “ 1 we see that

Ext1EHSpZ,EH1
pX,A,Bq,Zp2qq –

coker

˜

Zp1q
n

Ñ lim
ÝÑ
U

H1
`

U,OU Ñ Ω1
Uplog pB X Uqq

˘

¸

.

We analyze further the description of the latter. Note that there is an exact sequence

H0
pU,OUq Ñ H0

pU,Ω1
Uplog pB X Uqq Ñ H1

`

U,OU Ñ Ω1
Uplog pB X Uq

˘

Ñ H1
pU,OUq
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and the last term is 0. We also have an exact sequence of (coherent analytic) sheaves

0 Ñ Ω1
U Ñ Ω1

Uplog pB X Uqq Ñ p‘
n
i“1OBi

q ‘ p‘
t
l“1OEl

q Ñ 0,

Hence on taking cohomology, then passing to the limit over U , we obtain

0 Ñ Ω1
R Ñ Ω1

Rplog sCq
δ

ÝÑ p‘
n
i“1

ČR{fiRq ‘ p‘
t
l“1Cq

θ
ÝÑ R1π˚Ω

1
X

where we regard the last term as the stalk of a skyscraper sheaf, and the second term is
a notation for the stalk at 0 of π˚Ω

1
XplogBq. Here sC has irreducible components sCi with

ideal fiR, for 1 ď i ď n, and ČR{fiR is the normalization of R{fiR, which is also the stalk
at 0 of π˚OBi

.

But the map θ is in fact easily seen to be essentially the differential d0,12 , expressed in de
Rham cohomology; thus the R1 skyscraper sheaf has stalk a C-vector space with a basis
indexed by the El, and the negative definite intersection pairing of the components of the
exceptional divisor E implies that we have an exact sequence

0 Ñ Ω1
R Ñ Ω1

plog sCq
φ
ÝÑ ‘

n
i“1

ČR{fiR Ñ 0

where φ is obtained by composing the similar earlier map δ with the projection to the
direct summand. Here one sees also that

Ω1
Rplog sCq “ Ω1

R ‘ ΣiR
dfi
fi
.

We note that this R-module is in general not free.

We thus obtain that the vector space associated to the EHS is

V “ cokerR Ñ Ω1
Rplog sCq

and we have an exact sequence

0 Ñ
Ω1
R

dpRq
Ñ V Ñ ‘

n
i“1

ČR{fiR Ñ 0.

Taking account now of the integral lattice of the MHS, this then yields an exact sequence

0 Ñ
Ω1
R

dpRq
Ñ Ext1EHSpZ,EH1

ppX,A,Bq,Zp2qq Ñ p‘
n
i“1

ČR{fiRq{p2πiqZ Ñ 0

which we may view, upon composing with an exponential mapping, as

0 Ñ
Ω1
R

dpRq
Ñ Ext1EHSpZ,EH1

ppX,A,Bq,Zp2qq Ñ ‘
n
i“1

ČR{fiR
˚

Ñ 0

where the last term is a sum of unit groups.
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We may compare this with the localization sequence in K-theory

0 Ñ K2pRq Ñ K2pRr
1

ś

i fi
sq Ñ G1pR{p

ź

i

fiqRq Ñ 0

where G1 is the Grothendieck group of finitely generated modules over the Noetherian
ring R{p

ś

i fiqR. We then further compute with a localization sequence for R{p
ś

i fiqR

and its total quotient ring, which is just ‘n
i“1Qp ČR{fiRq where Qp´q denotes the quotient

field. This gives

0 Ñ G1pR{p
ź

i

FiqRq Ñ ‘
n
i“1Qp ČR{fiRq

˚ B
ÝÑ Z Ñ 0,

where the last Z is G0 of the residue field of R{p
ś

i fiqR. We see easily that B is the

sum of the discrete valuations on each of the fields Qp ČR{fiRq, and so we have an exact
sequence

0 Ñ ‘
n
i“1

ČR{fiR
˚

Ñ G1pR{p
ź

i

fiqRq Ñ Zn´1
Ñ 0

Thus we have constructed a surjective homomorphism

α : K2pRr
1

ś

i fi
sq Ñ Zn´1

and its kernel fits into an exact sequence

0 Ñ K2pRq Ñ kerpαq Ñ ‘
n
i“1

ČR{fiR
˚

Ñ 0.

This is consistent with the above maps

c2,2 : K2pRq Ñ
Ω1
R

dpRq
“ EDB2

ppX,A,Hq,Zp2qq

and

c2,2 : K2pRr
1

ś

i fi
sq Ñ EDB2

ppX,A,Bq,Zp2qq.

7. Appendix: Mixed hodge complexes and enriched mixed hodge complexes

We fix some notations and conventions regarding mixed Hodge structures and mixed
Hodge complexes which will be used in the rest of the article. This section can be skipped
and referred to as needed.

7.1. (Filtered Derived Categories) Let A be a commutative ring. In the following,
D`pAq will denote the bounded (below) derived category of A-modules. We let D`FpAq

and D`F2pAq denote the corresponding derived categories of filtered (resp. doubly fil-
tered) complexes defined as in ([5], Section 7). Similarly, for a topological space X, we
let D`pX,Aq (resp. DF`pX,Aq,DF`

2 pY,Aq) denote the bounded below derived category
of sheaves of (resp. filtered, doubly filtered) A-modules. One constructs these categories
by first forming the usual homotopy category of filtered complexes (where homotopies of
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filtered chain complexes are required to be morphisms of filtered complexes), and then
localizing with respect to filtered quasi-isomorphisms (i.e. morphisms such that the in-
duced map on associated graded is a quasi-isomorphism).

If f : X Ñ Y is a continuous map, then one can define in the usual way (for example
via Godement resolutions) derived functors Rf˚ : DF`pX,Aq Ñ DF`pX,Aq and similarly
for the derived category of doubly filtered complexes. Note that taking the associated
graded also induces functors between the derived categories of filtered (or doubly filtered)
modules and the usual derived category. The construction of the derived push-forward is
compatible with taking the associated graded.

7.2. (Mixed Hodge Structures) In the following, MHS will denote the category of Q-
mixed Hodge structures. In particular, an object M “ pMZ, pMQ,W¨q, pMC, F

¨qq P MHS
consists of a finitely generated abelian group MZ with an increasing weight filtration W¨

on MQ – MZ bQ, and a decreasing Hodge filtration F ¨ on MC :“ MZ bZ C such that the
triple pMC, F

¨,W¨q satisfies the usual conditions for a C-mixed Hodge structure ([4]). Let
Zp´pq P MHS denote the usual Tate Hodge structures of pure weight 2p. If M P MHS,
then let WkM P MHS denote the mixed Hodge structure with WkMZ given by pulling
WkMQ to MZ via the natural morphism MZ Ñ MQ, and the induced Hodge and weight
filtrations.

7.3. (Mixed Hodge Complexes) We briefly recall some aspects of the theory of mixed
Hodge complexes due to Deligne ([5], Section 8). A Z-Hodge complex of weight n is a
triple pK, pKC, F q, αq such that K P D`pZq, pKC, F q P D`FpCq, and α : KC Ñ K b C
is an isomorphism. These data are required to satisfy certain axioms, namely that the
differential on KC is strictly compatible with the filtration F , and that F induces a pure
Hodge structure of weight n` k on HkpKCq. A mixed Hodge complex (MHC) is a 5-tuple
pK, pKQ,W q, pKC, F,W q, α, βq, where K P D`pZq, pKQ,W q P D`FpQq, pKC, F,W q P

D`F2pCq and α : KQ Ñ K bQ (resp. β : pKC,W q Ñ pKQ,W q bC) is an isomorphism in
D`pQq (resp. D`FpCq). Furthermore, the induced triple pGrWn pKQq, pGrWn pKCq, F q, βq is
required to be a hodge complex of weight n. The key result here, due to Deligne, states
that the cohomology HnpKq of a MHC with the induced filtrations W rns and F where

pW rnsqqpH
n
pKQqq :“ ImpHn

pWq´nKQq Ñ Hn
pKQqq

F p
pHn

pKCqq :“ ImpHn
pF pKCq Ñ Hn

pKCqq

gives rise to a mixed Hodge structure on HnpKq.

Remark 7.4. Here and in what follows, W is always an increasing filtration and F a
decreasing filtration.

7.5. (Cohomological Mixed Hodge Complexes) A cohomological Hodge complex of
weight n on a topological space X consists of a triple pK, pKC,Fq, αq where K P D`pX,Zq,
pKC,Fq P D`FpX,Cq, and α : KC Ñ KbC is an isomorphism. Furthermore, the induced
triple pRΓpX,Kq, RΓpX, pKC,Fqq, RΓpαqq is required to be a Hodge complex of weight
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n. A cohomological mixed Hodge complex is a 5-tuple pK, pKQ,Wq, pKC,F ,Wq, α, βq,
where K P D`pX,Zq, pKQ,Wq P D`FpX,Qq, pKC,F ,Wq P D`F2pX,Cq and α : KQ Ñ

K b Q (resp. β : pKC,Wq Ñ pKQ,Wq b C) is an isomorphism in D`pX,Qq (resp.
D`FpX,Cq). Furthermore, the associated graded under the weight filtrations should give
rise to cohomological hodge complexes of weight n. An important fact is the following
result of Deligne:

Theorem 7.6. (Deligne, [5]) Let K :“ pK, pKQ,Wq, pKC,F ,Wq, α, βq be a cohomological
mixed Hodge complex on X. Then

RΓpKq :“ pRΓpKq, RΓpKQ,Wq, RΓpKC,F ,Wq, RΓpαq, RΓpβqq

is a mixed Hodge complex. In particular, the cohomology groups HipX,Kq carries a mixed
Hodge structure.

7.7. (Sheaves on simplicial spaces) In the next paragraph, we recall some elements
of the theory of mixed Hodge theory on simplicial spaces. Here we recall some element of
the theory of sheaves on simplicial spaces. Again, we refer to [5] for details. In the follow-
ing, X¨ shall denote a simplicial space. In this setting, one has analogs of the categories
defined in 7.1. In particular, let D`pX‚, Aq (resp. DF`pX‚, Aq,DF`

2 pX‚, Aq) denote the
bounded below category of sheaves of (resp. filtered, doubly filtered) A-modules. Recall
that any space S defines the constant simplicial space S‚ where Sn “ S for all n. Then,
a sheaf on S‚ is the same as giving a co-simplicial sheaf of S.

A morphism of simplicial spaces f : X‚ Ñ Y‚ induces push-forward functors on the
corresponding filtered derived categories. A augmentation of a simplicial spaces X‚ over
S is a morphism ϵ : X‚ Ñ S of simplicial spaces where S is considered as a constant
simplicial space. In that case, the push-forward of a complex of sheaves (resp. filtered
sheaves, doubly-filtered sheaves) on Xd gives rise to a complex of co-simplicial sheaves
(resp. filtered, doubly filtered sheaves) on S. In particular, the global sections functor
applied to a complex K of sheaves on X‚ gives rise to a cosimplicial complex; we denote
it by RΓ‚pX‚, Kq (and similarly for its filtered variations). We denote its associated total
complex by RΓpX‚, Kq P D`pAq. We define the hyper-cohomology of K as HipX‚, Kq :“
HipRΓpX‚, Kqq.

Remark 7.8. In practice, one usually gets an object in D`pX‚, Aq (or its filtered analogs)
by first constructing a genuine complex on each Xn compatible with the simplicial struc-
ture. In particular, it is not enough to start with objects of D`pXn, Aq. In practice,
we shall avoid this complication by simply choosing canonical Godement resolutions and,
therefore, obtaining canonical complexes representing various derived objects.

7.9. (Mixed Hodge complexes on simplicial schemes) One can also define the
analogs of cohomological MHC’s in the simplicial setting We briefly recall these construc-
tions. As before, the main reference for all results here is [5].



ENRICHED HODGE STRUCTURES AND CYCLES ON COMPLEX ANALYTIC THICKENINGS. 37

Given a commutative ring A as before, one can define the derived category DG`pAq of
differentially graded (DG) A-modules. A complex of of DG A-modules can be thought
of as a double complex where the first degree is degree of the complex, and the second is
given by the DG structure. One can also define filtered analogs DG`F pAq and DG`F2pAq

([5], 8.1.10). In particular, one has a notion of DG mixed Hodge complex. This consists
of objects K P DG`pZq, pKQ,W q P DG`F pQq, and pKC,W, F q P DG`F2pCq with isomor-
phism α and β as before. Moreover, one requires that the induced data in each differential
degree pK‚,n,W, F q gives rise to a mixed Hodge complex.

Similarly, we can define a cosimplicial MHC by using the cosimplicial degree instead of
the garden module degree. We refer loc. cit. for the details. We note here that the usual
functor which sends a cosimplicial A-module to the corresponding DG A-modules, sends
cosimplicial MHC’s to DG MHC’s.

If X‚ is a simplicial space, then a cohomological mixed Hodge complex on X‚ consists of
a 5-tuple pK, pKQ,Wq, pKC,F ,Wq, α, βq, where K P D`pX‚,Zq, pKQ,Wq P D`FpX‚,Qq,
pKC,F ,Wq P D`F2pX‚,Cq and α : KQ Ñ K b Q (resp. β : pKC,Wq Ñ pKQ,Wq b C) is
an isomorphism in D`pX‚,Qq (resp. D`FpX‚,Cq). Moreover, one requires that, for all n,
the restriction of this data to Xn is a cohomological mixed Hodge complex.

Recall, applying the global sections functor gives (filtered) cosimplicial modulesRΓ‚pX‚, Kq,
RΓ‚pX‚, pKQ,W qq, and RΓ‚pX‚, pKC,W, F qq. It follows that applying the global sections
functor RΓ‚ to the data of a cohomlogical MHC on X‚ gives rise to a cosimplicial MHC
(and therefore a DG MHC).

On the other hand, supposeK is a differentially graded MHC. Then the diagonal filtration
δpW,Lq on the total complex TotpKq is defined as follows:

δpW,LqnpTotpKq
i
q :“ ‘p`q“iWn`qK

p,q.

Here q is the cosimplicial degree, and LrpTotpKqq :“ ‘qěrK
p,q is the usual Leray filtration.

One defines the Hodge filtration by setting F rpTotpKqiq :“ ‘p`q“iF
rKp,q. The following

theorem of Deligne is the crucial result in the theory of differentially graded MHC’s:

Theorem 7.10. ([5], 8.1.15) Let K be a differentially graded MHC defined by a cosim-
plicial MHC as above. Then pTotpKq, δpW,Lq, F q give rise to a mixed Hodge complex.

The theorem implies that, given a cohomological mixed Hodge complex K on a simplicial
space X‚, its hypercohomology HipX‚, Kq has a natural structure of a mixed Hodge
structure. The weight filtration is the one induced by the diagonal filtration defined
above on the associated total complex RΓpX‚, Kq.

7.11. (Pseudo-morphisms) In order to construct, mixed Hodge complexes on simplicial
schemes we require complexes (and not only objects of the derived category) and actual
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morphisms of complexes between these objects. In this context, it will be useful to consider
the following notion of pseudo-morphisms of complexes.

Definition 7.12. Given two bounded complexes K and L in an abelian category, a
pseudo-morphism between K and L is a chain of morphisms of complexes

K “ K0
f
ÝÑ K1 Ð K2 Ñ ¨ ¨ ¨ Ñ Kn`1 “ L

where all the arrows except possibly f are quasi-isomorphisms. If f is also a quasi-
isomorphism, then we say that the pseudo-morphism is a pseudo-isomorphism. A mor-
phism of pseudo-morphisms consists of a sequence of morphisms Kj Ñ Lj such that the
obvious diagrams commute.

The notion of a pseudo-morphism allows one to lift the notion of mixed Hodge complex
to actual complexes. We require the data to be defined at the level of complexes, where
the role of quasi-isomorphisms is played by pseudo-isomorphisms. In fact, similar remarks
apply to the cohomological mixed Hodge complexes as well as their simplicial and DG
analogs. We leaves the details to the details (or see [11], Chapter 3). In the following,
we shall use the prefix genuine in front of mixed Hodge complex (or cohomological mixed
Hodge complex etc.) to emphasize that we are working with genuine complexes and
pseudo-morphisms as above.

7.13. (Remarks on constructing genuine MHC’s) In this article, we will construct
mixed Hodge structures (and enriched Hodge structures) by first constructing cohomolog-
ical mixed Hodge complexes on various (simplicial) spaces and then applying the results
of Deligne recalled above to obtain a mixed Hodge structure. In practice, it will be im-
portant for us to work with genuine cohomological MHC’s (i.e. objects in the category of
chain complexes rather the derived categoryt) and pseudo-morphisms (see 7.11). Here we
recall some examples which explain how we will in practice lift MHC’s to genuine MHC’s
(in a canonical way).

Example 7.14. Let X be a smooth projective variety over C and j : U ãÑ X an open
such that D :“ XzU is a simple normal crossings divisor. Then the data

pRj˚Z, pRj˚Q, τq, pΩ‚
XplogDq,W, F qq

gives rise to a cohomological mixed Hodge complex on X which gives the usual mixed
Hodge structure on HipU,Zq. Here W and F are the usual weight and Hodge filtrations,
and τ is the usual truncation filtration. One can view this as a genuine cohomologi-
cal MHC as follows. First, choose the canonical representative of Rj˚Z given by the
Godement resolution, and similarly for Rj˚Q. By abuse of notation, will still denote
the corresponding complex by Rj˚Z. We shall apply this to all derived functor appear-
ing below (i.e. they will be represented by the associated Godement resolutions). This
gives lifts of all our objects to actual (filtered) complexes. It remains to explain the con-
struction of the pseudo-morphisms representing α and β. Since Godement resolutions
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are functorial, the construction of α is clear. We explain how to represent the isomor-
phism β : pRj˚Q, τq b C Ñ pΩ‚

XplogBq,W q as a pseudo-isomorphism. One has a natural
diagram:

pRj˚Q, τq Ñ pRj˚C, τq Ñ pRj˚Ω
‚
U , τq Ð pj˚Ω

‚
U , τq Ð pΩ‚

XplogDq, τq Ñ pΩ‚
XplogDq,W q

All the arrows here are filtered quasi-isomorphisms except possibly the left most, which
becomes one after tensoring with C.

We note that the construction in the previous example is functorial in pX,Uq. In partic-
ular, in one has a simplicial scheme X¨ and a simplicial simple normal crossings divisor
on X¨, then the above construction will allow one to obtain a cohomological MHC on X¨

7.15. (Enriched Hodge complexes) In this paragraph, we slightly modify the theory
of mixed Hodge complexes and cohomological mixed Hodge complexes to incorporate the
theory of enriched Hodge structures.

An enriched Hodge complex (EHC) is a mixed Hodge complex plus an additional object
pK 1

C,F
1q P D`FpCq and a morphism γ : pK 1

C, F
1q Ñ pKC, F q such that the induced triples

pV,HipKq, fq, where Vp :“ HipK 1
Cq{F

1p and f is induced via γ, are enriched Hodge struc-
tures. Note that if HipK 1

Cq are finite dimensional, then Vp :“ HipK 1
Cq{F

1p is automatically
an object of C. Therefore, checking the above condition amounts to checking that γ is a
quasi-isomorphism. Here F

1p is the usual induced filtration on HipKq.

Given an enriched Hodge complexK, its cohomology groups HipKq are naturally equipped
with an enriched Hodge structure. The mixed Hodge structure part is simply the mixed
Hodge structure on HipKq associated to the underlying mixed Hodge complex.

One can similarly define the notion of a cohomological enriched Hodge complex on a space
X. This consists of data of filtered complexes pK, pKQ,Wq, pKC,F ,Wq, pK1

C,F 1qq where
the triple pK, pKQ,Wq, pKC,F ,Wqq is a cohomological mixed Hodge complex such that
pRΓpX,Kq, RΓpX, pKQ,Wqq, RΓpX, pKC,W ,Fqq, RΓpX, pK1

C,F 1qqq is an enriched Hodge
complex. One can also define cohomological enriched Hodge complexes on simplicial
spaces X¨ in the same way as for usual cohomlogical MHC’s on simplicial spaces. Finally,
one can also define DG enriched Hodge complexes. We record the following observation
for future use.

Lemma 7.16. Suppose K is a DG enriched Hodge complex. Then the associated total
complex

pTotpKq, pTotpKQq, δpW,Lqq, pTotpKCq, δpW,Lq, F q, pTotpK 1
Cq, F 1

qq

is an enriched hodge complex.

Proof. At the level of mixed Hodge complexes this is the result of Deligne recalled in
Theorem 7.10. Therefore, it is enough to show that the induced morphism TotpKCq Ñ
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TotpK 1
Cq is a quasi-isomorphism. But, this follows from the comparison of the spectral

sequences associated to the double complexes KC and K 1
C, and noting that the condition

for being a DG enriched Hodge complex requires that the induced maps K‚,n
C Ñ K

1‚,n
C are

quasi-isomorphisms for each n. □

We conclude this section by noting that there is an obvious notion of genuine enriched
Hodge complexes (and its cohomological variants) analogous to the case of mixed Hodge
complexes. One requires an actual filtered complex representing pK 1

C, F
1q and that γ is a

pseudo-isomorphism.
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