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LIFTING

D. PATEL AND G. V. RAVINDRA

Abstract. Let X be a smooth projective variety over an algebraically closed field k
of characteristic zero and Y ⊂ X a smooth ample hyperplane section. The Weak Lef-
schetz conjecture for Chow groups states that the natural restriction map CHp(X)Q →
CHp(Y )Q is an isomorphism for all p < dim(Y )/2. In this note, we revisit a strategy
introduced by Grothendieck to attack this problem by using the Bloch-Quillen formula to
factor this morphism through a continuous K-cohomology group on the formal complet-
ing of X along Y . This splits the conjecture into two smaller conjectures: one consisting
of an algebraization problem and the other dealing with infinitesimal liftings of algebraic
cycles. We give a complete proof of the infinitesimal part of the conjecture.
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1. Introduction

In this note, we continue our study ([12]) of weak Lefschetz type theorems for Chow
groups modulo rational equivalence. We begin by recalling the weak Lefschetz conjecture
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for Chow groups. In the following, let X be a smooth projective variety over an alge-
braically closed field k of characteristic zero. Furthermore, let Y ⊂ X denote a smooth
ample hyperplane section.

Conjecture 1.1. The natural restriction map

CHp(X)Q → CHp(Y )Q

is an isomorphism for all p < dim(Y )/2.

When p = 1, the Chow group of divisors of any smooth, projective variety can be
identified with the Picard group, and the above conjecture is the Grothendieck-Lefschetz
theorem which, in fact, holds integrally. Grothendieck’s proof (see [8]) for Picard groups
proceeded by first lifting line bundles from Y to the formal completion X of X along Y ,
and then to make use of the Lefschetz conditions to extend line bundles from the formal
scheme to the whole scheme X. Unfortunately, this strategy does not directly apply
to higher codimension cycles since the Chow groups are invariant under infinitesimal
thickenings. However, the Bloch-Quillen formula allows one to interpret the Chow groups
in terms of K-cohomology, where one can try to apply deformation theoretic methods.
We briefly recall the formalism.

Let Ki,X denote the i-th K-theory sheaf in the Zariski topology (cf. §2.3). Then the
Bloch-Quillen formula gives an isomorphism

Hp(X,Kp,X)
∼=→ CHp(X).

One has a similar statement for Y . The restriction morphism from the conjecture is then
the restriction map

Hp(X,Kp,X)Q → Hp(Y,Kp,Y )Q,

and the conjecture is equivalent to showing that this map is an isomorphism for all
p < dim(Y )/2. Let Yn denote the n-th infinitesimal neighborhood of Y in X. Then
we can consider (Ki,Yn) as a pro-sheaf on Y (cf. §2.3), and, in particular, consider its
continuous cohomology (see [9]). Then one can factor the above morphism (see §3, [12])
as a composition:

Hp(X,Kp,X)Q → Hp
cont(X, (Kp,Yn))Q → Hp(Y,Kp,Y )Q.

Therefore the following two conjectures imply Conjecture 1.1:

Conjecture 1.2. The natural morphism

Hp(X,Kp,X)Q → Hp
cont(X, (Kp,Yn))Q

is an isomorphism for all p < dim(Y )/2.

Conjecture 1.3. The natural morphism

Hp
cont(X, (Kp,Yn))Q → Hp(Y,Kp,Y )Q

is an isomorphism for all p < dim(Y )/2.
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In ([12]), the authors proved conjecture 1.3 for p = 2. In this note, we give a complete
proof of this conjecture. In particular, we prove the following theorem.

Theorem 1.4. Let X be a smooth projective variety over an algebraically closed field k of
characteristic zero and Y a smooth ample hyperplane section. Then the natural restriction
map

Hp
cont(X, (Kq,Yn))→ Hp(Y,Kq,Y )

is an isomorphism for all p+ q < dim(Y ). In particular,

Hp
cont(X, (Kp,Yn))→ Hp(Y,Kp,Y )

is an isomorphism for all p < dim(Y )/2.

Note that the above theorem does not require one to tensor with Q. The basic strategy
to prove the above conjecture in the case of p = 2 was to use Bloch’s theorem (see [2])
describing the kernel of the (surjective) morphism

K2,Yn → K2,Y

in terms of 1-forms. The proof of Theorem 1.4 proceeds in a similar manner. Instead
of Bloch’s theorem, we make use of Goodwillie’s theorem which relates the kernel of the
morphism

Kp,Yn → Kp,Y

to cyclic homology (cf. §2.3). In particular, Goodwillie’s theorem gives an isomorphism of
this kernel with the kernel of the corresponding morphism at the level of cyclic homology
sheaves over Q

HC/Qp−1,Yn
→ HC/Qp−1,Y .

Therefore, the bulk of the proof goes into computing the cohomology of these sheaves.
Since Y is smooth, its cyclic homology sheaves are well understood by the classical
Hochschild-Kostant-Rosenberg isomorphism. On the other hand, the cyclic homology
sheaves for Yn are not easy to understand. However, if one assembles all of these together
into a pro-sheaf, then one has a pro-analog of the classical Hochschild-Kostant-Rosenberg
isomorphism ([4]). This reduces the proof of the theorem to some standard computations
with (pro) de Rham complexes.

In this note, we say nothing about conjecture 1.2, which is clearly the more difficult
conjecture. The morphism

Hp(X,Kp,X)→ Hp
cont(X, (Kp,Yn))

factors as (see §3, [12])

Hp(X,Kp,X)→ Hp(X,Kp,X)→ Hp
cont(X, (Kp,Yn)).

The second arrow above can again be understood via cyclic homology (when p = 1, this is
an isomorphism, see [12], Proposition 3.1), and we hope to pursue this elsewhere. On the
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other hand, it is not clear how to analyze the first arrow. Note that one has a global analog
of the above picture. Namely, there is a sequence of morphisms of K-theory spectra:

K(X)→ K(X)→ Ktop(X)→ K(Y ).

Here Ktop(X) is by definition the homotopy inverse limit of the spectra K(Yn). This gives
a diagram of global K-theory groups:

Kp(X)→ Kp(X)→ Ktop
p (X)→ Kp(Y ).

Furthermore, in the case of K(X) and K(Y ), the Brown-Gersten-Quillen spectral sequence
allows one to relate the K-cohomology groups with the global K-theory groups. While
there is an analog of the this BGQ-spectral sequence for Ktop(X), with Ep,q

2 terms given
by the continuous cohomology groups above, there seems to be no such spectral sequence
for Kp(X). The obstruction to the existence of such a spectral sequence seems to be due
to the lack of Zariski descent in this case. The interested reader may refer to [3] and [7]
for related work in a different setting.

We conclude this introduction with a brief description of the contents of each section.
In §2, we recall some preliminaries on pro- systems, K-theory, and Hochschild homology
(and its various other cousins). In §2.1 we recall some statements from the theory of
pro-sheaves. In §2.2, we recall Hochschild homology and its cousins, and, in particular,
the pro-HKR isomorphism adapted to our setting of pro-sheaves. In §2.3, after some pre-
liminaries on K-theory, we recall Goodwillie’s theorem relating relative K-theory along
infinitesimal extensions to negative cyclic homology. In §2.4, we recall the Kassel-Sletsjøe
spectral sequence (adapted to our setting of pro-sheaves), which relates Hochschild ho-
mology over a base field k with the Hochschild homology over a subfield F of k. In §3,
we compare continuous cohomology of cyclic homology pro-sheaves on X with that of the
cohomology of cyclic cohomology sheaves on Y . The results of §2.2 reduce this to a com-
putation of various sheaves of differentials and de Rham cohomology sheaves. In §3.1, we
recall a result of Ogus, which compares the pro-system of de Rham cohomology sheaves
on X and Y . In §3.2, we use Ogus’s result and some basic results from algebraic geometry
(Kodaira-Nakano vanishing) to prove isomorphisms between the continuous cohomology
of pro-sheaves of differentials on X with the cohomology of sheaves of differentials on Y .
In §3.3, the results of §3.2 are extended, using the Kassel-Sletsjøe spectral sequence, to
an arbitrary subfield F ⊂ k. Finally, in §4 we give a proof of the main result.

2. Preliminaries

2.1. Preliminaries on pro-systems. For any abelian category A, let Pro(A) denote
the category of pro-objects in A. Let AN denote the full subcategory of the category
of pro-objects consisting of pro-objects indexed by N. We shall use the notation (An) to
denote an object in this category. Note that any object A ∈ A gives rise to a constant pro-
system denoted (A). We shall sometimes denote this simply by A. Recall that morphisms
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between two objects (An) and (Bn) in this category are given by

HomAN((An), (Bn)) = lim←−lim−→HomA(Ai, Bj).

In particular, a system of morphisms fn : An → Bn compatible with the transition maps
An → An−1 and Bn → Bn−1 gives rise to a morphism of pro-systems. We shall refer
to such morphisms as strict morphisms. In the following, we shall also be interested in
Ch(AN), the corresponding category of (co) chain complexes of pro-systems. Note that
both AN and Ch(AN) are abelian categories. In the following, by pro-objects in A we will
always mean objects in AN. We refer the reader to ([1], Appendix) for details regarding
pro-objects.

Suppose that A is the category of sheaves of abelian groups on some topological space
X. In this situation, the corresponding category of pro-sheaves has enough injectives. In
particular, following Jannsen ([9]), we denote by Hp

cont(X, (Fn)) the continuous cohomol-
ogy groups of the given pro- system. In this setting, one has the following standard exact
sequence:

0→ R1lim←−Hp−1(X,Fn)→ Hp
cont(X, (Fn))→ lim←−Hp(X,Fn)→ 0.

If
0→ (F ′n)→ (Fn)→ (F ′′n)→ 0

is a complex of strict morphisms, then it is exact if

0→ F ′n → Fn → F ′′n → 0

is exact for all n.

2.2. Preliminaries on cyclic homology. In this section, we recall some background
material on various non-commutative homology theories. We refer to ([14], Chapter 9)
for details. In the following, k will denote a fixed field of characteristic zero.

A mixed complex over k is a triple (C ·, b, B) where (C ·, b) is a chain complex of k-vector
spaces, and B : C · → C ·[1] is a morphism of degree 1 such that B2 = 0.

Example 2.1. Given a commutative ring A over k, we can consider the mixed complex
(Ω·A/k, 0, d). In particular, we put Ωp

A/k in degree p, b = 0 and B = d.

Given a mixed complex (C ·, b, B) , one can associate to it the cyclic homology chain
complex HC(C ·) whose homology groups HCi(C

·) are called the cyclic homology groups.
One can also associate to it the negative cyclic (resp. periodic cyclic) homology HN(C ·)
(resp. HP(C ·) ) chain complex, whose homology groups are the negative cyclic (resp.
periodic cyclic) homology groups. Furthermore, the homology groups of the underlying
complex (C ·, b) will be referred to as the Hochschild homology groups. These chain
complexes are related by the following two standard exact sequences of chain complexes:
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1: 0→ C· → HC(C ·)→ HC(C ·)[−2]→ 0
2: 0→ HN(C ·)→ HP(C ·)→ HC(C ·)[−2]→ 0

A morphism of mixed complexes f : (C ·, b, B) → (C ′·, b′, B′) is a quasi-isomorphism if
it induces a quasi-isomorphism of underlying complexes C · → C ′·. A quasi-isomorphism
of mixed complexes induces an isomorphism on the corresponding Hochschild, cyclic, neg-
ative cyclic and periodic cyclic homology groups.

Given a commutative ring A over k, there is a standard mixed complex (C ·(A), b, B)
associated to A. The corresponding Hochshild (resp. cyclic, negative cyclic, and peri-

odic cyclic) homology groups will be denoted by HH
/k
q (A) (resp. HC

/k
q (A), HN

/k
q (A), and

HP
/k
q (A)).

Let X be a scheme over k. Then one can sheafify the constructions of the previous
paragraph. In particular, one can associate to X a mixed complex of sheaves (C·(X), b, B).
One has the corresponding Hochschild (resp. periodic cyclic, negative cyclic, and cyclic)

homology sheaves HH/k
q,X (resp. HP/k

q,X , HN /k
q,X , HC/kq,X) over X.

If A is a commutative algebra over a field k of characteristic zero, then the shuffle
product induces a morphism of graded A-modules:

Ωq
A/k → HH/k

q (A).

Furthermore, if A is a (noetherian) regular algebra over k, then the above morphism is
an isomorphism. On the other hand, one has a natural morphism of mixed complexes

µ : (C ·(A), b, B)→ (Ω·A/k, 0, d),

which, at the level of homology, is multiplication by q+ 1 in degree q when pre-composed
with

Ωq
A/k → HH/k

q (A).

It follows that if A is regular, then µ is a quasi-isomorphism of mixed complexes. In this
setting, one has the following description for the cyclic homology of A over k:

HC/k
q (A) = Ωq

A/k/dΩq−1
A/k ⊕ Hq−2

dR (A)⊕ Hq−4
dR (A)⊕ · · · .

Here Hq
dR(A) is the cohomology of the de Rham complex (Ω·A/k, d) of A over k. If X

is a smooth scheme over k, then we can sheafify these results. In particular, the shuffle
product induces an isomorphism of sheaves

Ωq
X/k → HH

/k
q,X .

Furthermore, the natural morphism of mixed complexes

µ : (C·(X), b, B)→ (Ω·X/k, 0, d)
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is a quasi-isomoprhism. It follows that one has an isomorphism:

HC/kq,X → Ωq
X/k/dΩq−1

X/k ⊕H
q−2
dR (X/k)⊕Hq−4

dR (X/k)⊕ · · · .

One can generalize the result of the previous paragraph to the pro-setting. We shall
assume for the remainder of this section that A is a noetherian algebra essentially of finite
type and smooth over a field k of characteristic zero and F ⊂ k be a subfield of k. Let
I ⊂ A be an ideal. Then one has the following theorem due to Cortiñas-Haesemeyer-
Weibel.

Theorem 2.2. ([4], Theorem 3.2, Proposition 3.5 ) The shuffle product induces an iso-
morphism of graded pro-A-modules:

(Ωq
(A/Im)/F )→ (HH/F

q (A/Im)).

Proof. This is precisely Theorem 3.2 of loc. cit. when F = k and Proposition 3.5 for
general F. �

On the other hand, one has a morphism of pro-mixed complexes:

µ : (C·(A/Im), b, B)→ (Ω·(A/Im)/F , 0, d).

Again, for each m, the composition

Ωq
(A/Im)/F → HH/F

q (A/Im)→ Ωq
(A/Im)/F

is multiplication by q + 1.

Lemma 2.3. In the above setting, µ is a quasi-isomorphism of pro complexes.

Proof. We must show that the induced morphism

(HH/F
q (A/Im))→ (Ωp

(A/Im)/F )

is an isomorphism of graded pro-modules. By the previous remarks we have that the
composition

(Ωq
(A/Im)/F )→ (HH/F

q (A/Im))→ (Ωq
(A/Im)/F )

is multiplication by q + 1, and the first arrow is an isomorphism of pro-modules. Since
F ⊃ Q, it follows that the right morphism divided by q + 1 is an inverse of the first
morphism. Therefore, the right arrow is an isomorphism. �

Corollary 2.4. One has an isomorphism of pro-modules:

(HC/F
q (A/Im))→ (Ωq

(A/Im)/F/dΩq−1
(A/Im)/F )⊕ (Hq−2

dR ((A/Im)/F ))⊕ (Hq−4
dR ((A/Im)/F ) · · · .
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Suppose now that X is a smooth scheme essentially of finite type over a field k of
characteristic zero. Let Y ⊂ X denote a closed smooth subvariety of X and Yn denote
the n-th infinitesimal thickening of Y in X. In this situation, we can sheafify the previous
constructions to get a morphism of mixed complexes of pro-sheaves

µ : ((C·(Yn), b, B))→ ((Ω·Yn/k
, 0, d)).

Lemma 2.5. Let X be as above. Then the morphism induced by the shuffle product

(Ωq
Yn/k

)→ (HH/k
q,Yn

)

is a pro-isomorphism.

Proof. It is enough to check this locally on X. On the other hand, in the affine case this
is precisely the theorem of Cortiñas-Haesaemeyer-Weibel recalled above. �

Corollary 2.6. Let X be a smooth projective variety over a field k, and F ⊂ k a subfield.
Suppose Y ⊂ X is a smooth closed subvariety and Yn is the n-th infinitesimal thickening
of Y in X. Then one has an isomorphism of (graded) pro-sheaves on Y :

(HC/Fq,Yn
)→ (Ωq

Yn/F
/dΩq−1

Yn/F
)⊕ (Hq−2

dR (Yn/F ))⊕ (Hq−4
dR (Yn/F )) · · · .

Proof. It is enough to show that

µ : (C·(Yn))→ (Ω·Yn/F ).

is a quasi-isomorphism of mixed complexes of pro-sheaves. Again, this can be checked
locally on X. In this case, it is precisely Lemma 2.3 �

2.3. Preliminaries on K-theory. For any scheme X, we let Kperf (X) denote the (non-
connective) K-theory spectrum of perfect complexes on X and Kperf

q (X), the correspond-
ing homotopy groups. It follows from ([13]), that if X is a smooth scheme then the
natural map K(X)→ Kperf (X) is a weak equivalence, where K(X) is the usual K-theory
spectrum of vector bundles on X. In general, if X has an ample family of line bundles
then Ki(X) = Kperf

i (X) for all i ≥ 0.

We denote by KX the presheaf of spectra on X which associates to an open U ⊂ X
the spectrum K(U) and similarly for Kperf . Then the corresponding homotopy sheaves

are given by Ki,X and Kperf
i,X . By definition, Ki,X is the sheaf associated to the presheaf

whose sections over U ⊂ X are given by Ki(U), and similarly for Kperf
i,X .

Remark 2.7. Strictly speaking, Kperf
X is the pre-sheaf which takes the DG-category of per-

fect complexes on U to the spectrum Kperf (U). To avoid dealing with pseudo-functors, one
should take some rectification of the corresponding (pseudo) pre-sheaf of DG-categories.
We refer to ([15]) for details.
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Suppose Y ⊂ X is a closed subvariety and Yn is its n-th infinitesimal neighborhood.
The we can consider Kperf

Yn
as pre-sheaves on Y . Let Kperf

(Y,Yn)
1 denote the homotopy fiber

of

Kperf
Yn
→ Kperf

Y .

In particular, one has a long exact sequence of homotopy sheaves:

· · · → Kperf
i,(Yn,Y ) → K

perf
i,Yn
→ Kperf

i,Y → Kperf
i−1,(Yn,Y ) → · · ·

where Kperf
i,(Yn,Y ) are the sheaves of homotopy groups associated to Kperf

(Yn,Y ).

Remark 2.8. In the following, we shall always assume that our (presheaves of) spectra
and presheaves of spectra are fibrant-cofibrant. In particular, we choose once and for all
a functorial fibrant-cofibrant replacement.

There is a standard way to associate a pre-sheaf of spectra to a chain complex of
sheaves such that the homotopy sheaves of the corresponding pre-sheaf of spectra are the
homology sheaves of the given complex. Given a scheme X/k and a subfield F ⊂ k, let

HH/F
X denote the corresponding Hochschild homology pre-sheaf of spectra relative to F .

Similarly, let HN /F
X (resp. HC/FX , and HP/F

X ) denote the corresponding negative cyclic
(resp. cyclic, and periodic cyclic) homology presheaves of spectra. Just as above, we let

HH/F
(Yn,Y ) denote the homotopy fiber of the restriction map HH/F

Yn
→ HH/F

Y . One defines

HN /F
(Yn,Y ), HC

/F
(Yn,Y ), and HP/F

(Yn,Y ) in a similar manner. The short exact sequence

0→ HN(C ·)→ HP(C ·)→ HC(C ·)[−2]→ 0

sheafifies to give a cofibre sequence of presheaves of spectra:

HN /F
X → HP/F

X → Ω−2HC/FX .

For the inclusions Y ↪→ Yn, this gives rise to a commutative diagram of presheaves of
spectra:

HN /F
(Yn,Y )

//

��

HP/F
(Yn,Y )

//

��

Ω−2HC/F(Yn,Y )

��

HN /F
Yn

//

��

HP/F
Yn

//

��

Ω−2HC/FYn

��

HN /F
Y

// HP/F
Y

// Ω−2HC/FY

1In this note, we work with the local projective model structure on the category of pre-sheaves of
spectra.
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By a theorem of Goodwillie ([5], Theorem II.5.1), HP is invariant under infinitesimal
thickenings. In particular, the natural morphism

HP/F
Yn
→ HP/F

Y

is a weak equivalence. It follows that HP/F
(Yn,Y ) is contractible, and, in particular, the

corresponding homotopy sheaves are trivial. It follows that one has an isomorphism of
sheaves

HC/Fi−1,(Yn,Y ) → HN
/F
i,(Yn,Y ).

Suppose now X is a scheme over a field k of characteristic zero. Let Y ⊂ X denote a
closed subvariety, and Yn denote its n-th infinitesimal thickening. In this situation, Good-
willie’s theorem ([6], Theorem 4.5) allows one to identify the sheaves Kperf

(Yn,Y ) with negative

cyclic homology. We shall use this result in the following to reduce the computation of
relative K-theory to that of relative negative cyclic homology. There is a natural chern
character

Kperf
X → HN /Q

X .

This gives rise to a diagram of presheaves of spectra:

Kperf
(Yn,Y )

//

��

Kperf
Yn

//

��

Kperf
Y

��

HN /Q
(Yn,Y )

// HN /Q
Yn

// HN /Q
Y

Goodwillie’s theorem says that the left vertical arrow is a weak equivalence. In particular,
it induces an isomorphism on the corresponding sheaves of homotopy groups. Combining
the results of the previous paragraph one has an isomorphism:

(1) Ki,(Yn,Y ) → HC/Qi−1,(Yn,Y ).

We now recall a pro-sheaf version of the previous results. For the rest of this section,
we assume that X is a smooth variety over a field k of characteristic zero, and Y is a
closed smooth subvariety. As before, Yn is the n-th infinitesimal neighborhood of Y in X.
By ([12], Lemma 5.9), the natural restriction maps

Kperf
i,Yn
→ Kperf

i,Y

and

HC/Fi,Yn
→ HC/Fi,Y

are surjective. It follows that we have short exact sequences:

0→ Kperf
i,(Yn,Y ) → K

perf
i,Yn
→ Kperf

i,Y → 0,
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and

0→ HC/Fi,(Yn,Y ) → HC
/F
i,Yn
→ HC/Fi,Y → 0.

This gives rise to a commutative diagram of pro-sheaves with exact rows:

0 // (Kperf
i,(Yn,Y ))

//

��

(Kperf
i,Yn

) //

��

(Kperf
i,Y ) //

��

0

0 // (HC/Qi−1,(Yn,Y ))
// (HC/Qi−1,Yn

) // (HC/Qi−1,Y ) // 0

We record the following corollary for future reference:

Corollary 2.9. Let X and Y be as above. Then, by (1), one has an isomorphism:

Hp
cont(Y, (K

perf
q,(Yn,Y )))→ Hp

cont(Y, (HC
/Q
q−1,(Yn,Y ))).

2.4. Pro-Kassel-Sletsjøe Spectral sequence. In the following, we will need to com-
pute continuous cohomology groups on a scheme Y/k with coefficients given by the pro-

system (HH/Q
p,Yn

) (with notation as in the previous section). We shall achieve this by first
using geometric methods to compute the analogous result over k and then descending
to Q. The Kassel-Sletsjøe spectral sequence ([10], 4.3a ; [4] Lemma 3.4) allows one to
pass from k to a subfield F . We recall the relevant statements in our setting of pro-sheaves.

Given a commutative algebra A over k, one has a natural decomposition for Hochschild
homology:

HH/k
p (A) ∼= ⊕HH(i),/k

p (A).

Furthermore, one has HH
(p),/k
p (A) = Ωp

A/k and HH
(p),/k
p (A) = 0 for i < p. If A is regular,

then one also has HH
(i),/k
p (A) = 0 for all i > p.

One can sheafify the construction of the last paragraph. In particular, for any scheme
X/k, one has a decomposition:

HH/k
p,X
∼= ⊕HH(i),/k

p,X .

If X is smooth, then the only non-vanishing term on the right is the i = p term, where

one has HH(p),/k
p,X = Ωp

X/k.

Let F ⊂ k be a subfield of k and A be a k-algebra. Then one has the following spectral
sequence:

Lemma 2.10. ([10], 4.3a) For each p ≥ 1 there is a bounded second quadrant homological
spectral sequence (0 ≤ i < p, j ≥ 0):

pE
1
−i,i+j = Ωi

k/F ⊗F HH
(p−i),/k
p−i+j (A)⇒ HH

(p),/F
p+j (A).
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One can sheafify this spectral sequence to obtain a spectral sequence of sheaves on X:

pE
1
−i,i+j = Ωi

k/F ⊗F HH(p−i),/k
p−i+j,X ⇒ HH

(p),/F
p+j,X

Suppose now that X/k is smooth and Y is a closed subvariety of X, and Yn is the n-th
infinitesimal neighborhood of Y . Then one obtains a spectral sequence of pro-sheaves on
Y :

pE
1
−i,i+j = (Ωi

k/F ⊗F HH(p−i),/k
p−i+j,Yn

)⇒ (HH(p),/F
p+j,Yn

)

Since X is smooth, by Lemma 2.5 and the previous remarks, the only non-zero E1 terms
are the ones where j = 0, and, in this case, one has:

pE
1
−i,i+j = (Ωi

k/F ⊗F Ωp−i
Yn/k

).

In particular, one has has a finite decreasing exhaustive filtration F · of (Ωp
Yn/F

) such that

griF := F i/F i+1 ∼= ((Ωi
k/F ⊗F Ωp−i

Yn/k
)).

Note that F 0 = (Ωp
Yn/F

) and F p+1 = 0.

3. Sheaves of Differentials

In the following, let X be as before, a smooth projective variety over k. We let Y ⊂ X
denote a smooth subvariety, and Yn the n-th infinitesimal neighborhood of Y in X. In
particular, if I is the ideal of definition of Y , then In+1 is the ideal of definition of Yn and
Y = Y0. Let (X,OX) denote the corresponding formal scheme. Let Ωp

X/k, Ωp
Yn/k

, and Ωp
X/k

denote the corresponding sheaves of differential forms. If F ⊂ k is a subfield of k, then
let Ωp

X/F , Ωp
Yn/F

, and Ωp
X/F denote the corresponding sheaves of differential forms over

F . Finally, let (Ω·X/F , d), (Ω·Yn/F
, d) , and, (Ω·X/F , d) denote the corresponding de Rham

complexes.

3.1. De Rham cohomology sheaves. We recall a theorem of Ogus comparing the de
Rham cohomology sheaves H∗dR(Yn/F ) and H∗dR(Y/F ).

Theorem 3.1. ([11], Theorem 1.3) The natural restriction map of de Rham complexes

Ω·X/F → Ω·Yn/F

is a quasi-isomorphism. In particular, the natural restriction maps

H·dR(Yn/F )→ H·dR(Y/F ).

are isomorphisms.

Note that in loc. cit. this result is proved when X is smooth over k = C; however,
the same proof applies to any k of characteristic zero. More generally, Ogus’s proof also
applies to de Rham complexes over subfields F ⊂ k.
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3.2. Continuous cohomology of cotangent sheaves over k. In this section, we as-
sume further that Y is a smooth ample hyperplane section. For any F ⊂ k, one has a
natural surjection of sheaves of abelian groups on Y :

Ω1
Yn/F → Ω1

Y/F → 0.

Let Ω1
(Yn,Y )/F denote the kernel of this morphism. Similarly, one has a natural surjection:

Ωq
Yn/F

→ Ωq
Y/F → 0.

Again, let Ωq
(Yn,Y )/F denote the kernel. In ([12]), the authors proved the q = 1 case of the

following theorem.

Theorem 3.2. Let X be a smooth projective variety over k, and Y ⊂ X a smooth ample
hyperplane section. Then the natural restriction map

Hp(Y,Ωq
Yn/k

)→ Hp(Y,Ωq
Y/k)

is an isomorphism for p + q < dim(Y ) − 1 and an injection for p + q = dim(Y ) − 1. In
particular,

Hp(Y,Ωq
(Yn,Y )/k) = 0

for all p+ q < dim(Y )

Corollary 3.3. Let X and Y be as in the theorem. Then the natural restriction map

Hp
cont(Y, (Ω

q
Yn/k

))→ Hp(Y,Ωq
Y/k)

is an isomorphism for all p+ q < dim(Y )− 1 and an injection for p+ q = dim(Y )− 1.

Proof. Recall that one has an exact sequence:

0→ R1lim←−Hp−1(Y,Ωq
Yn/k

)→ Hp
cont(Y, (Ω

q
Yn/k

))→ lim←−Hp(Y,Ωq
Yn/k

)→ 0.

Theorem 3.2 implies that the pro-system (Hp−1(Y,Ωq
Yn/k

)) satisfies the Mittag-Leffler con-

dition for all p+ q < dim(Y ). Therefore, the left-most term in the above exact sequence
is zero for all p+ q < dim(Y ). Again, by the previous theorem, one has an isomorphism

lim←−Hp(Y,Ωq
Yn/k

)→ Hp(Y,Ωq
Y/k)

for all p + q < dim(Y ) − 1. This gives the desired isomorphism for p + q < dim(Y ) − 1.
Suppose now that p+ q = dim(Y )−1. In this case, the R1 term above still vanishes. Fur-
thermore, since taking inverse limits is left exact, the previous theorem gives an injection:

lim←−Hp(Y,Ωq
Yn/k

)→ Hp(Y,Ωq
Y/k).

�

We begin with some preliminary lemmas.
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Lemma 3.4. Let X and Y be as in the theorem. For all q > 0 and n ≥ 0, one has an
exact sequence of sheaves on Y :

0→ Ωq−1
Y/k ⊗OX

In+1/In+2 → Ωq
X/k ⊗OX

OYn → Ωq
Yn/k
→ 0.

Proof. When q = 1 and n = 0, one has the following fundamental exact sequence:

(2) 0→ I/I2 → Ω1
X/k ⊗OX

OY → Ω1
Y/k → 0.

Since Y is of codimension 1, and this is an exact sequence of locally free sheaves, one has
the following standard exact sequence:

0→ I/I2 ⊗OX
Ωq−1

Y/k → Ωq
X/k ⊗OX

OY → Ωq
Y/k → 0.

This gives the result for n = 0.
By Lemma 4.2 in [12], one has the following cotangent sheaf sequence

(3) 0→ In+1/In+2 → Ω1
X/k ⊗OX

OYn → Ω1
Yn/k → 0,

This gives rise to an exact sequence:

Ωq−2
X/k ⊗ I

n+2/In+3 → Ωq−1
X/k ⊗ I

n+1/In+2 → Ωq
X/k|Yn → Ωq

Yn/k
→ 0.

One also has the following standard exact sequence:

I/I2 ⊗OX
Ωq−2

X/k → Ωq−1
X/k ⊗OX

OY → Ωq−1
Y/k → 0.

Tensoring this exact sequence with the invertible sheaf In+1/In+2 gives an exact sequence:

In+1/In+2 ⊗ I/I2 ⊗OX
Ωq−2

X/k → Ωq−1
X/k ⊗ I

n+1/In+2 → Ωq−1
Y/k ⊗ I

n+1/In+2 → 0.

The leftmost term here is just the leftmost term in the 4-term exact sequence above.
Therefore, combining the 4-term exact sequence above with the previous exact sequence
gives the desired exact sequence.

�

Lemma 3.5. Let X and Y be as above. Then,

Hp(Y,Ωq
X/k|Y ⊗ I

n/In+1) = 0

for all 0 ≤ p+ q < dim(Y ).

Proof. By Lemma 3.4, we have an exact sequence:

0→ Ωq−1
Y/k ⊗ I/I

2 → Ωq
X/k|Y → Ωq

Y/k → 0.

Tensoring the above exact sequence with the locally free sheaf In/In+1 gives an exact
sequence:

0→ Ωq−1
Y/k ⊗ I/I

2 ⊗ In/In+1 → Ωq
X/k|Y ⊗ I

n/In+1 → Ωq
Y/k ⊗ I

n/In+1 → 0.

Then, by Kodaira-Nakano vanishing, one has that Hp(Y,Ωq−1
Y/k ⊗I/I2 ⊗In/In+1) = 0 for

all p+ q − 1 < dim(Y ). It follows that the cohomology of the middle term and the right
most term are isomorphic for all p + q < dim(Y ). On the other hand, Kodaira-Nakano
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vanishing applied to the right-most term gives that Hp(Y,Ωq
Y/k ⊗ In/In+1) = 0 for all

p+ q < dim(Y ). Therefore, Hp(Y,Ωq
X/k ⊗ In/In+1) = 0 for all p+ q < dim(Y ). �

Proof. (Theorem 3.2) Consider the following commutative diagram of sheaves on Y :

0

��
Ωq

X/k|Yn ⊗OYn
In/In+1

��
0 // Ωq−1

Y/k ⊗OX
In+1/In+2 //

��

Ωq
X/k ⊗OX

OYn
//

��

Ωq
Yn/k

//

��

0

0 // Ωq−1
Y/k ⊗OX

In/In+1 // Ωq
X/k ⊗OX

OYn−1
//

��

Ωq
Yn−1/k

// 0

0

Here the leftmost vertical arrow is zero. The bottom two rows are exact by Lemma 3.4.
The middle column is given by tensoring the standard exact sequence

0→ In/In+1 → OYn → OYn−1 → 0

with the locally free sheaf Ωp
X/k|Yn and is therefore also exact. By Lemma 3.5,

Hp(Y,Ωq
X |Y ⊗ I

n/In+1) = 0

for all p+q < dim(Y ). Therefore, taking the long exact sequence in cohomology associated
to the middle vertical column in the diagram above gives isomorphisms

Hp(Y,Ωq
X/k ⊗OX

OYn)→ Hp(Y,Ωq
X/k ⊗OX

OYn−1)

for all p+ q < dim(Y )− 1 and an injection when p+ q = dim(Y )− 1. Taking cohomology
of the horizontal exact sequences in the diagram above gives the following diagram of long
exact sequences:

· · · // Hp(Y,Ωq
X/k ⊗OX

OYn) //

��

Hp(Y,Ωq
Yn/k

) //

��

Hp+1(Y,Ωq−1
Y/k ⊗ In+1/In+2)

��

// · · ·

· · · // Hp(Y,Ωq
X/k ⊗OX

OYn−1) // Hp(Y,Ωq
Yn−1/k

) // Hp+1(Y,Ωq−1
Y/k ⊗ In/In+1) // · · ·

By the previous remarks and Lemma 3.5, it follows that the restriction maps

Hp(Y,Ωq
Yn/k

)→ Hp(Y,Ωq
Yn−1/k

)
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are isomorphisms for all p + q < dim(Y )− 1 and an injection when p + q = dim(Y )− 1.
In particular, the restriction morphism

Hp(Y,Ωq
Yn/k

)→ Hp(Y,Ωq
Y/k)

is an isomorphism for all p+ q < dim(Y )− 1 and an injection when p+ q = dim(Y )− 1.
Finally, applying this result to the long exact sequence in cohomology associated to the

short exact sequence:
0→ Ωq

(Yn,Y )/k → Ωq
Yn/k
→ Ωq

Y/k → 0

now gives the second part of the theorem.
�

In the rest of this section, we use the previous results to investigate the following
morphism:

Hp
cont(Y, (Ω

q
Yn/k

/dΩq−1
Yn/k

))→ Hp(Y,Ωq
Y/k/dΩq−1

Y/k).

In particular, we will prove the following theorem:

Theorem 3.6. Let X and Y be as in Theorem 3.2 and suppose that q ≥ 1. Then the
natural restriction morphism

Hp
cont(Y, (Ω

q
Yn/k

/dΩq−1
Yn/k

))→ Hp(Y,Ωq
Y/k/dΩq−1

Y/k).

is an isomorphism for all p+ q < dim(Y )− 1 and an injection for p+ q = dim(Y )− 1.

We begin with some preliminary remarks. First, note that we have a diagram of pro-
sheaves:

0 // (dΩq−1
Yn/k

) //

��

(Ωq,cl
Yn/k

) //

��

(Hq
dR(Yn/k)) //

��

0

0 // dΩq−1
Y/k

// Ωq,cl
Y/k

// Hq
dR(Y/k) // 0

Here Ωp,cl
Yn/k

denotes the sheaf of (locally) closed forms and Hq
dR(Yn/k) are the usual de

Rham cohomology sheaves. In particular, the rows in the above commutative diagram
are exact by definition. Furthermore, by Theorem 3.1, the prosystems (Hq

dR(Yn/k)) are
constant and, in particular, isomorphic to the constant pro-system (Hq

dR(Y/k)). It follows
that one has isomorphisms:

Hp
cont(Y, (H

q
dR(Yn/k)))→ Hp(Y,Hq

dR(Y/k)).

Proposition 3.7. The natural morphism

Hp
cont(Y, (dΩq−1

Yn/k
))→ Hp(Y, dΩq−1

Y/k)

is an isomorphism for p + q < N and an injection for p + q = N if and only if the
morphism

Hp
cont(Y, (Ω

q,cl
Yn/k

))→ Hp(Y,Ωq,cl
Y/k)

is an isomorphism for p+ q < N and an injection for p+ q = N .
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Proof. The commutative diagram above induces the following diagram in cohomology
where the rows are exact:

· · · // Hp
cont(Y, (dΩq−1

Yn/k
)) //

��

Hp
cont(Y, (Ω

q,cl
Yn/k

)) //

��

Hp
cont(Y, (H

q
dR(Yn/k))) //

��

· · ·

· · · // Hp(Y, dΩq−1
Y/k) // Hp(Y,Ωq,cl

Y/k) // Hp(Y,Hq
dR(Y/k)) // · · ·

The result is now a consequence of the 5-lemma and the fact that the restriction maps

Hp
cont(Y, (H

q
dR(Yn/k)))→ Hp(Y,Hq

dR(Y/k))

are isomorphisms. �

Proof. (Theorem 3.6) Consider the following two statements:

(1) The following morphism is an isomorphism for all p+q < dim(Y )−1 and injective
for p+ q = dim(Y )− 1:

Hp
cont(Y, (Ω

q
Yn/k

/dΩq−1
Yn/k

))→ Hp(Y,Ωq
Y/k/dΩq−1

Y/k).

(2) The following morphism is an isomorphism for all p+q < dim(Y )−1 and injective
for p+ q = dim(Y )− 1:

Hp
cont(Y, (dΩq

Yn/k
))→ Hp(Y, dΩq

Y/k).

We shall prove both of these statements simultaneously via induction on q. We begin
with the base case q = 1. Consider the following commutative diagram with exact rows:

0 // (dOYn) //

��

(Ω1
Yn/k

) //

��

(Ω1
Yn/k

/dOYn) //

��

0

0 // dOY
// Ω1

Y/k
// Ω1

Y/k/dOY
// 0

By considering the diagram of long exact sequences in cohomology associated to the above
diagram and applying Corollary 3.3, one concludes that statement (1) for q = 1 follows if
the natural restriction map

Hp
cont(Y, (dOYn))→ Hp(Y, dOY )

is an isomorphism for all p < dim(Y ) − 1 and an injection for p = dim(Y ) − 1. On the
other hand, we have a commutative diagram with exact rows:

0 // (k) //

��

(OYn) //

��

(dOYn) //

��

0

0 // k // OY
// dOY

// 0

Therefore,
Hp

cont(Y, (dOYn))→ Hp(Y, dOY )
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is an isomorphism if and only if

Hp
cont(Y, (OYn))→ Hp(Y,OY )

is an isomorphism. The result now follows from the exact sequences

0→ I/In+1 → OYn → OY → 0

and Kodaira-Nakano vanishing. This prove statement (1) for q = 1. Now for statement
(2) in the case q = 1, consider the following diagram with exact rows:

0 // (Ω1,cl
Yn/k

) //

��

(Ω1
Yn/k

) //

��

(dΩ1
Yn/k

) //

��

0

0 // Ω1,cl
Y/k

// Ω1
Y/k

// dΩ1
Y/k

// 0

Therefore, just as above, it is enough to show that the restriction map

Hp
cont(Y, (Ω

1,cl
Yn/k

))→ Hp(Y,Ω1,cl
Y/k)

is an isomorphism for p < dim(Y )−1 and an injection for p = dim(Y )−1. By Proposition
3.7, this is equivalent to showing that the restriction map

Hp
cont(Y, (dOYn))→ H1(Y, dOY )

is an isomorphism for all p < dim(Y )− 1 and an injection for p = dim(Y )− 1. We have
already seen this above.

Suppose that the statements hold for all fixed i < q. First, note that we have a
commutative diagram with exact rows:

0 // (dΩq−1
Yn/k

) //

��

(Ωq
Yn/k

) //

��

(Ωq
Yn/k

/dΩq−1
Yn/k

) //

��

0

0 // dΩq−1
Y/k

// Ωq
Y/k

// Ωq
Y/k/dΩq−1

Y/k
// 0

This gives the following commutative diagram with exact rows:

· · · // Hp
cont(Y, (Ω

q
Yn/k

)) //

��

Hp
cont(Y, (Ω

q
Yn/k

/dΩq
Yn/k

)) //

��

Hp+1
cont(Y, (dΩq−1

Yn/k
)) //

��

· · ·

· · · // Hp(Y,Ωq
Y/k) // Hp(Y,Ωq

Y/k/dΩq−1
Y/k) // Hp+1(Y, dΩq−1

Y/k) // · · ·

Therefore, statement (1) follows from the induction hypothesis, Corollary 3.3, and a dia-
gram chase. It remains to prove statement (2). Now consider the following commutative
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diagram with exact rows:

0 // (Ωq,cl
Yn/k

) //

��

(Ωq
Yn/k

) //

��

(dΩq
Yn/k

) //

��

0

0 // Ωq,cl
Y/k

// Ωq
Y/k

// dΩq
Y/k

// 0

This gives the following diagram in cohomology:

· · · // Hp
cont(Y, (Ω

q
Yn/k

)) //

��

Hp
cont(Y, (dΩq

Yn/k
)) //

��

Hp+1
cont(Y, (Ω

q,cl
Yn/k

)) //

��

· · ·

· · · // Hp(Y,Ωq
Y/k) // Hp(Y, dΩq

Y/k) // Hp+1(Y,Ωq,cl
Y/k) // · · ·

Once again the result follows from an application of Corollary 3.3, Proposition 3.7, and a
diagram chase. �

3.3. Continuous cohomology of cotangent sheaves over F . We use the same no-
tation and hypothesis as in the previous section. In particular, X is a smooth projective
variety over k and F ⊂ k is a fixed subfield. In this section, we generalize the main
theorems of the previous section to similar results for differentials relative to F . These
results will be used in the next section to compute cyclic homology relative to F = Q.

Theorem 3.8. Let X and Y be as in the theorem. Then the natural restriction map

Hp
cont(Y, (Ω

q
Yn/F

))→ Hp(Y,Ωq
Y/F )

is an isomorphism for all p+ q < dim(Y )− 1 and an injection for p+ q = dim(Y )− 1.

Proof. The Kassel-Sletsjøe spectral sequence (cf. §2.4) gives a filtration F · of (Ωq
Yn/F

)

such that

griF := F i/F i+1 ∼= ((Ωi
k/F ⊗F Ωq−i

Yn/k
)),

F 0 = (Ωq
Yn/F

), and F q+1 = 0. Recall, if V is a finite dimensional vector space over k, then

one has an isomorphism:

Hp(Y, V ⊗k F) ∼= Hp(Y,F)⊗k V.

Filtering an arbitrary vector space by finite dimensional subspaces and using that coho-
mology commutes with direct limits, gives the same result for arbitrary V . In particular,
one has isomorphisms:

Hp(Y,Ωi
F/k ⊗k Ωq−i

Y/k) ∼= Hp(Y,Ωq−i
Y/k)⊗k Ωi

k/F .

One has a similar result for continuous cohomology. Therefore, the result now follows
by recurrence, using the filtration above, and the fact that it holds over k. We leave the
details to the reader. �
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Theorem 3.9. Let X and Y be as above and suppose that 1 ≤ q. Then the natural
restriction morphism

Hp
cont(Y, (Ω

q
Yn/k

/dΩq−1
Yn/F

))→ Hp(Y,Ωq
Y/k/dΩq−1

Y/F ).

is an isomorphism for all p+ q < dim(Y )− 1 and an injection for p+ q = dim(Y )− 1.

Proof. Given the previous theorem, and Theorem 3.1, the proof of this theorem is exactly
the same as that of Theorem 3.6. Note that Proposition 3.7 also holds over F . �

4. Main Theorem

As in the previous sections, we let X denote a smooth projective variety over k, and
Y ⊂ X is a smooth ample hyperplane section. Let Yn denote the n-th infinitesimal
thickening of Y in X.

Theorem 4.1. The natural restriction map

Hp
cont(Y, (Kq,Yn))→ Hp(Y,Kq,Y )

is an isomorphism for all p+ q < dim(Y ) and injective for p+ q = dim(Y ).

Proof. Recall that we have an exact sequence of pro-sheaves

0→ (Kq,(Yn,Y ))→ (Kq,Yn))→ Kq,Y → 0.

Therefore, it is enough to show that

Hp
cont(Y, (Kq,(Yn,Y ))) = 0

for all p+ q < dim(Y ) + 1. By Corollary 2.9, it is enough to show that

Hp
cont(Y, (HC

/Q
q−1,(Yn,Y ))) = 0

for p + q < dim(Y ) + 1. For the latter, it is enough to show that the natural restriction
maps

Hp
cont(Y, (HCQq−1,Yn

))→ Hp(Y,HC/Qq−1,Y )

is an isomorphism for p + q < dim(Y ) + 1 and an injection for p + q = dim(Y ) + 1. On
the other hand, by Corollary 2.6

(HC/Qq,Yn
) ∼= (Ωq

Yn/Q/dΩq−1
Yn/Q)⊕ (Hq−2

dR (Yn/Q))⊕ (Hq−4
dR (Yn/Q)) · · · .

The result now follows from Theorem 3.9 and Theorem 3.1. �

Corollary 4.2. The natural restriction map

Hp
cont(X, (Kp,Yn))→ Hp(Y,Kp,Y )

is an isomorphism for all p < dim(Y )/2.
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