LOCAL MONODROMY OF GENERALIZED ALEXANDER MODULES

MADHAV NORI AND DEEPAM PATEL

ABSTRACT. Given a semi-abelian variety G over a field k < C, a morphism f : X\Y — G of algebraic
varieties, and a closed sub-variety Y < X, one can consider the cohomology groups
HY (X, Y9 f*Z[m1(G)])

where Z[m1(G)] is the ‘universal local system of Z[71(G(C), e)]-modules’ on G(C). If G is a Torus, then
classical Alexander modules are examples of such groups. In this article, we study local monodromy as
we vary the data (X,Y, G, f) in a family over a curve. In particular, we obtain an analog of the classical
local monodromy theorem in this context. Our tools include a Mordell-Lang type result, a parametrized
version of the basic lemma due to Beilinson, and a Galois theoretic weight argument in the style of
Grothendeick’s Galois theoretic proof of quasi-unipotence of local monodromy.
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1. INTRODUCTION

In the following, we fix a field k of char(k) = 0 and an embedding k < C. Let G denote a semi-abelian
variety over k and e € G(k) denote the identity. In this setting, we may consider the local system Z[m (G)]
on G(C) (cf. 2.1.1). Its stalk at a point y € G(C) is given by Z[m1(G;e,y)], i.e., the free abelian group

D.P. would like to acknowledge support from the Simons Foundation.
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over homotopy classes of paths from e to y (see 2.1.1). It is naturally a local system of (free rank 1)
Z[m1 (G, e)]-modules."

Let X be a variety over k, Y < X be a closed subvariety, and f : X\Y — G a morphism of varieties.
One can consider the relative singular cohomology groups

HY (X, Y f*Z[mi (G)]) := HY(X™, ji f*Z[m(G)]),

where X" and Y*" are the associated complex analytic spaces and j : X\Y — X is the natural inclu-
sion.? In this article, we study the local monodromy of these objects as we vary pgm in a family. We
note that a more general local monodromy theorem in this context was proven in KETusing the theory of
nearby cycles. The goal of this article is to provide a different proof via Galois theory and bypassing the
theory of nearby cycles.

In a subsequent article, we shall construct a universal abelian category, denoted GM(k, G), of ‘Gamma
motives over G’. This category comes equipped with a canonical conservative and exact Betti realization
functor
Rp : GM(k; A) — M(Z[m1 (G, €)]).

Here, M(Z[71(G,e)]) denotes the category of finitely generated Z[m1(G,e)]-modules. Any quadruple
(X,Y, f,i), with (X,Y, f) as before and i a nonnegative integer gives rise to an object H'(X,Y, f) €
GM(k, G) whose Betti realization is H (X", Y9; f*Z[r1(G)]). From this perspective, the present article
studies the local monodromy of a family of ‘Gamma motives’. We do not discuss Gamma motives in this
article, since the monodromy results and tools presented here are likely to be of wider interest.

1.1. The Local Mon omy theorem. We begin by recalling the classical local monodromy theorem
due to Grothendeick (F . In this section, we work in the setting of complex algebraic varieties. Let C
be a smooth (connected) curve over C, ¢ € C be a fixed closed point, and F' : X — C a morphism. Let
A denote a small disk centered at c. The restriction of R‘F,Q to a small enough punctured disk A is
a local system with stalk R'F,Q; = H (X;, Q) (t € A*). In particular, for a general point t € A* and a
fixed base point s € A*, one has the corresponding local monodromy representation:

p:m (A%, s) — GL(H (X, Q)).

In this setting, the classical local monodromy theorem states that, if ¢ denotes the canonical generator
of m (A%, s) (i.e. the counter-clockwise loop), then the eigenvalues of o are roots of unity.

One of the main results of this article is an analog of the aforementioned local monodromy theorem in the
context of generalized Alexander modules discussed above. For simplicity, we begin by recalling the main
statement of our monodromy theorem in the following slightly specialized setting. With C as above, we
assume that we are given the following data:

(D1) A morphism F': X — C and a closed subscheme Y < X,

(D2) A morphism f : X\Y — G (over C') where G := G x C. In particular, 7 : G — C is a split

semi-abelian scheme.

With these assumptions, we have the constant local system Z := Z[r1 (G, e)] of R := Z[71(G, e)]-modules
on the curve C and a local system L of 7*(#)-modules on G, such that L|g, is the local system Z[m1(G)]
on G for each t € C. For each t € C, consider the resulting morphism f; : X;\Y; — G; =~ G. The
cohomology groups H' (X}, Y;; f#Z[m1(G)]) form a local system on a sufficiently small punctured disk A*
centered on ¢ € C. For simplicity, we assume that the cohomology group H'(X,, Yy; fFZ[m1(G)]) is a free
R-module for all t € A*. Moreover, we assume that the aforementioned cohomology groups vanish in all

1We use the algebraic geometry convention for composition of paths i.e. 1 - y2 := 71 0 y2.
2In the following, we often drop the superscript ‘an’ in the notation for the associated complex analytic space.
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other degrees (i.e. for all j # 7). In this setting, the cohomology groups H'(X,,Y;; f#Z[m1(G)]) form a
local system of free R-modules on A*. Note that the monodromy action on %, = Z[m1(G, e)] is trivial,
and therefore the monodromy action on H'(X;, Yy; f#Z[m1(G)]) is R-linear. In particular, for a general ¢
(and fixed base point s € A*), we have a natural monodromy representation:

pimi(A%,s) — GL(H (X, Yii fFZIm(G)])).
Let K be a fixed algebraic closure of the the fraction field of R. By definition, we have an extension
1-T—->G—> A1,
where T is a torus, and A is an abelian variety. In particular, we have a natural inclusion
m(T,e) > R* — K*.
Let P(x) € R[z] denote the characteristic polynomial of the canonical generator o of w1 (A%, s).

Theorem 1.1.1. With notation as above, let P(x) = (x — &) -+ (x — &q) be a factorization of P in K.
Then there exists a natural number m such that £7*,65", ..., lie in the image of w1 (T e).

We may identify R with the Laurent polynomial ring Z[t7, ... ,t:E /] where r = dim(T), r’ = 2dim(A),
and the natural inclusion (T, e) — R has image given by the monomials in the ¢; for 1 < < r. With
this notation, the theorem posits the existence of a natural number m such that the m-th power of the

eigenvalues of monodromy are monomials of the form ¢]* - - - ¢%" where a; € Z.

Remark 1.1.2. Note that if G is taken to be a point, then the theorem specializes to the classical
monodromy theorem.

Remark 1.1.3. The assumption that H (Xy, Y3; f#Z[m1(G)]) is free in degree i and vanishes in all other
degrees can be replaced by simply requiring freeness in all degrees.

As an immediate consequence, one has the following corollary.

Corollary 1.1.4. With notation and assumptions as in Theorem 1.1.1, suppose furthermore that G is
an abelian variety. Then the eigenvalues of monodromy are roots of unity.

Proof. In this case, the torus is trivial and m(T,e) = 1. The result now follows from the previous
theorem. 0

In the following, we prove the theorem in a more general setting. More precisely, we do not assume
that the semi-abelian scheme G is split and allow for more general semi-abelian schemes G — C. We
also remove the assumptions of free-ness and ‘only one non-vanishing degree’ on the cohomology groups
considered above. More precisely, let Y, X and C be as above. Suppose we are given a semi-abelian
scheme G — C' (with identity section e : C' — §G), a morphism f : X\Y — G over C such that there is a
global extension (over C'):
1-T—-G-A->1

where T is a torus (over C), and A is an abelian scheme (over C). In this setting, one has the following
data (see 2.1.4):

(1) A local system Z on C with fiber %; = Z[71(G, er)].

(2) A local system L of 7~ 1%-modules such that L|g, = Z[m1(G;)].
Since G is globally an extension of A by 7T, the morphism 7 : G — C is a topological fibration. The
local system Z is constant on a small disk A centered at ¢, and we identify it with its fiber R := %, =
Z[71(Ge,e)]. The cohomology groups H*(Xy,Y;; f#Z[m1(G:)]) form a local system of R-modules on a
small disk punctured disk A* as before. In particular, one has a natural monodromy representation:

p:m (A%, s) = Autp(H (Xy, Yi; fEZ[71(%)])).
Let T := 7., and K denote the algebraic closure of the fraction field of R.



4

MADHAV NORI AND DEEPAM PATEL

Theorem 1.1.5. Let o be the canonical generator of w1 (A*, s). With notation as above, there are natural
numbers r,k and mq,...,my € w1 (T, e) such that

arbmorphisms

hm:algebraic

(6" —my) - (0" — mp)H (X, Yi; fFZ[71(Ge)]) = 0.

Note that, as before, if G is an abelian scheme, then one has all m; = e and the local monodromy is
quasi-unipotent.

Remark 1.1.6. The content of the theorem is local around ¢. In particular, the existence of a global
extension 1 -7 — G — A — 1 is only required in a neighborhood of c.

1.2. Strategy of Proof. Our proof of the monodromy theorem is based on three ingredients:

(1)

A Mordell-Lang type statement: More precisely, let K denote an algebraically closed field of
characteristic 0 and A = K [tfl, tQﬂ, ...,tE1] denote the corresponding Laurent polynomial ring.
A monomial in A is an element of the form ¢7't5? - - - t%» for some (ay,...,a,) € Z". Finally, let
E := K(t1,...,t,) denote the fraction field of A, and E denote a fixed algebraic closure of E. In
this setting, we have the following result.

Theorem 1.2.1. Let P(x;t1,ta,...,t,) € A[x] be a monic polynomial and let P = (x—&;) -+ (z—
£4) be its factorization in E. The following assumptions on P are equivalent:
(I) If b,cy,¢a,...,¢n € K are such that P(b;ci,ca,...,¢,) = 0 and ¢1,...,¢, are all roots of
unity, then b is also a root of unity.
(II) There is a natural number v such that £7,&5,...,&; are all monomials of A.

q@i&her%l%)ve theorem follows from the Mordell-Lang conjecture in the Tori setting due to Laurent
. However, we give a completely self-contained elementary proof of the theorem in section
3.1 below. In would be interesting to see if the proof given here can be extended to cover the
more general statement of loc. cit. We hope to come back to this problem in the future.
Given the above theorem, an application of base change and the local monodromy theorem for
unipotent local systems in the classical setting immediately allows one to deduce a slightly weaker
version of Theorem 1.1.1 from the Theorem above. Namely, one obtains the analog of Theorem
1.1.1 where the eigenvalues are monomials (but not necessarily that they come from the Torus).
A Galois theoretic weight argument: We define an etale analog of our cohomology groups in the
setting where all our objects are defined over a field k  C (see 2.1.7). Over the algebraic closure
these come equipped with a Galois action, and one has Artin’s comparison theorem identifying
these etale objects with the relative cohomology groups above (after passing to profinite comple-
tions at the level of fundamental groups). A weight argument using the Galois action allows one
to deduce that the monomials appearing as eigenvalues must come from the Torus. We refer to
sections 3.2 and 3.3 for the weight argument. This completes the proof of Theorem 1.1.1.
A parametrized ‘Basic Lemma’: Finally, we prove a parametrized version of the ‘Basic Lemma’
due to Beilison in the form stated in (8;%]) This allows us to deduce 1.1.5 from 1.1.1 (see 4.6). We
refer to section 4 for the precise statement of the parametrized basic lemma and the application
to Theorem 1.1.5.

1.3. Contents. In Section 2 we recall some basic background and define our etale objects. In Section
3, we prove Theorems 1.1.1 and 1.2.1. Finally, in Section 4 we prove the parametrized basic lemma and
apply it to prove Theorem 1.1.5.

Acknowledgements: We would like to thank V. Srinivas for bringing to our attention..
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2. PRELIMINARIES

In this section, we recall some background and basic facts about our cohomological objects. We consider
etale analogs of our cohomological objects, and compare these with the Betti analogs.

2.1. The Betti realization. As before, let k be a fixed field of characteristic zero equipped with a fixed
embedding o : k — C, G denote a fixed semi-abelian variety over k, and e € G(k) the identity. We also
fix an algebraic closure k < k < C.

2.1.1. (The local system Z[m1(G)]) The category of local systems on G*" is equivalent to the category
of Z[m1(G,e)] modules. In particular, the identity map m1(G,e) — m1(G,e) gives rise to a natural local
system on G°", denoted by Z[71(G)]. The fiber of Z[m(G)] at a point y € G(C) is given by Z[71(G; e, y)].
Here, 71 (G} e, y) denotes the homotopy classes of paths from e to y. Note that Z[m;(G)] is a local system
of (free rank one, left) Z[r(G), e]-modules. If G = G is a fixed universal cover, then it is easy to see
that mZ = Z[m(G)]. For example, consider the usual path space PG*" — G*" x G and the pullback
PG2" of this path space along the inclusion G x e — G x G. This construction gives an explicit model
7 PG — G for the universal cover, and one can check that mZ =~ Z[m1 (G)].

2.1.2. (Multiplication by m) Let [m] : G — G denote the isogeny induced by multiplication by m. The
corresponding subgroup 71 (G, e)™ < 71 (G, e) gives rise to the local systems

Vinn 1= Z/nZ[m1 (G, e)/m1 (G, e)™].

Note that this is also given by [m].«(Z/nZ). These local systems form a natural prosystem, and the
inverse limit (over m,n) will be denoted by Z[[r1(G)]]. Taking the limit over (¢¥,¢%) (for a fixed
prime £) gives rise to a local system denoted by Z,[[71(G)]]. It is a local system of Z,[[r1(G,e)]] :=
lim Z/¢*Z[ (G, €)/m1(G, e)" J-modules. Note that this ring is naturally a power series in dim(G)-
variables. If we choose generators x; for m1 (G, e), then it is a power series ring in the variables x; — 1.

2.1.3. (Etale local systems) One has an etale analog of the constructions of the previous paragraphs.
Consider the (geometric) etale fundamental group 7§*(G,e). The multiplication by m map is defined
over k, and one obtains etale local systems V! exactly as above over k. Note that the base change
of these etale local systems to C identify with the local systems V,, , on G(C) (as a consequence of
Grothendeick’s comparison theorem for the etale fundamental groups). For future reference, we note

that 7§*(G}, e) has a canonical I'y := Gal(k/k)-action.

2.1.4. (The local system in families) The constructions of the previous paragraphs can be performed in
families as follows. In particular, let 7 : G — S be a semi-abelian scheme (over the complex numbers),
and e : S — G denote the identity section. In this case, the exponential map gives rise to an exact
sequence:

15K —e*T(G/S) 1> G — 1

where T(G/S) is the relative tangent bundle. This is an exact sequence of group schemes over S. By
abuse of notation, we denote by I the corresponding sheaf of sections. Then the stalk IC; at s € S is
given by m1(Gs,e(s)). Let Z := Z[K]. Then % is a sheaf of rings on S such that %, = Z[m1(Gs, e(s))].
Setting £ := hZ gives a local system on G. Moreover, it is a sheaf of 771 (#)-modules. By construction,
Llg, = Z|m1(Gs)] as a local system on Gs. We may also define a families version, denoted by L, ,,, of the
local systems Vj,, , of the previous paragraph. And similarly, a families version L}, of V¢, . We leave
the details to the reader.

2.1.5. (The Betti realization) Given a morphism f: X — G, we set
HE (X, f*2[m(G)]) == HYX ", f*Z[m (G)]) = H (RO (X", f*Z[m (G)]),
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where f*Z[m1(G)] is the pull back local system. More generally, for Y < X is a closed sub-variety,
j:U :=X\Y < X the corresponding open immersion, and a morphism f : X\Y — G, we set
HA (X, Y3 f*2Im (G)]) o= HE (X, Yo" 2 (@),

We record some standard properties of these cohomology groups in the following remark for future
reference.
Remark 2.1.6. With (X,Y, f) and G as above:

(1) The HY(X,Y; f*Z|m1(G)]) are finitely generated Z[m; (G, €)]-modules.

(2) Given a morphism of tuples F: (X", Y') —» (X,Y) over G (i.e. F: X' — X is a morphism over

G where F(Y') c Y), one has a natural pull back morphism of Z[71 (G, €)]-modules:
F* HY(X,Y; P Z[m(G)]) — HY(X', Y f*2[m (G))).
(3) Given a closed subvariety Z < Y, one has a natural long exact sequence of Z[m (G, e)]-modules
= HI(X, Z; f*Z[m(G)]) — H'(X, Y f*Z[m(G)])
— H(Y, Z; f*Z[m (G)]) —» HHX,Y; f*Z[m(G)]) — -
2.1.7. (The etale realization) Consider now a triple (X,Y, f) where X is a scheme of finite type over k,
Y < X a closed subscheme, and f: X\Y — G a morphism of schemes over k. Let j : X\Y — X denote
the natural inclusion, and j; its base change. In this setting, we can consider the etale cohomology
groups:
Het(XkaYkafk Vet ) . Hét(th]k'fk (Vet ))

We have the following standard properties of these etale cohomology groups:

(1) The cohomology groups H.,(Xy, Yz; f2V,el,) are finite Z/nZ[rn{ (Gy, e)/ (7§ (G, €))™]-modules.

k"mm
Moreover, since the local system V,ffn are defined over k, these cohomology groups have a natural

['k-action which is semi-linear over the ['y-action on Z/nZ[r{' (G, e)/(7{ (G, €))™].

(2) Let Z[[7¢4(Gy,e)]] = liLnZ/ka[ﬁft(G,;,e)/(wft(GE,e)ek]. Taking inverse limit over over k
of HL, (X5, Yis fEVi ) , we obtain a finitely generated Z[[n{*(G}, e)]]-module denoted by
HY, (X7, Yis f5(Ze[[7§(G)]])).  As above, one has an induced (continuous) T'j-action which is
semi-linear over the ['g-action on Z[[7{!(Gj,e)]]. Note that this construction is functorial in
morphisms of triples.

Remark 2.1.8. Recall that the inverse limit functor is exact on prosystems of modules where each
underlying module is a finite set. In our setting, the usual long exact sequences in etale cohomology
gives rise to long exact sequences of pro-systems. These remain exact after passing to inverse limits. In
particular, various standard long exact sequences in etale cohomology give rise to analogous long exact
sequences of Z[[7§' (G, e)]]-modules in the setting above.

Base changing to C, gives a natural map of pro-systems:
HZ(X Y; f*( m n)) - Hlet(XImYka fk VEt )
Moreover, by Artin’s comparison theorem, this is an isomorphism of prosystems. In the following, we

will identify Zg[[m1 (G, e)]] with Z[[7§*(G%,e)]] using Grothendieck’s comparison theorem. For future
reference, we summarize the discussion above in the following proposition.

Proposition 2.1.9. Let (X,Y, f,i) be as above.
(1) There is a natural isomorphism of Ze[[m1(G, e)]]-modules:
compp et : H'(X,Y f*(Z[m1(G)])) ®zpry (6,0 Zellmi (G, e)]] — Hey (X5, Y f7 (Zel[7 (G)]]))-

1(
(2) There is a natural continuous Zo[[7$H (G, €)]]-semi-linear Ty action on the etale cohomology

groups Hi, (X5, Yi; £ (2= (G)]D).
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2.2. Comparison of etale and betti monodromy. Let C' be a smooth curve over a field k. We shall
assume given fixed embeddings k < k < C. Let ¢ € C'(k), and F denote a local system of Z/nZ-modules
on C.

Let B denote the completion of the local ring O¢ . at its maximal ideal. This is a complete dvr with
residue field k, and fraction field denoted by K. The local system F gives rise to a local monodromy
representation:

P Gal(K/K) — Aut(Fg).
On the other hand, we may consider the corresponding local system F%™ on C'*". We fix a small disk A
centered at ¢, and consider the corresponding representation

p:m (A%, s) > Aut(FM)

where s € A* is a fixed base point, and t € A* some generic point. Choosing the standard positive
generator allows us to identify Z = m(A*, s).

Following (F%‘%pose XIV), we may identify the restriction of p®* to the geometric etale fundamental
group with the corresponding representation p. In fact, in loc. cit. a more general result comparing
vanishing cycles (defined in the etale and complex analytic settings) is proved. We recall here only the
statement needed in the following.

More precisely, suppose k = C. In this setting, the inertia group I = Gal(K/K) = 2(1) We may
(canonically) identify the latter with Z, and one has the resulting inclusion Z < Z = i(l) With this
notation, one has an isomorphism Fgr =~ F" (functorial in F) such that the resulting representations
p¢ and p are isomorphic when restricted to Z. In the following, we shall apply this to the local systems
Effm and L., ,, defined above (or rather their higher direct images to the base curve C).

3. PROOF OF THEOREM 1.1.1

In this section, we give a proof of Theorem 1.1.1. In the first sub-section, we prove the key Theorem
1.2.1. In the second sub-section, we give a galois theoretic weight argument. Finally, the last sub-section
completes the proof of Theorem 1.1.1.

3.1. Proof of Theorem 1.2.1. We begin by recalling the statement of the theorem. Let K denote an
algebraically closed field of characteristic 0 and A = K[tF!,¢F!, ..., t] denote the corresponding Laurent
polynomial ring. A monomial in A is an element of the form ¢7'¢5%---¢%» for some (aq,...,an) € Z™.
Finally, let E := K(t1,...,t,) denote the fraction field of A, and E denote a fixed algebraic closure of E.

Theorem 3.1.1. Let P(x;t1,t2,....t,) € Az] be a monic polynomial and let P = (z —&1) -+ (x —&a) be
its factorization in E. The following assumptions on P are equivalent:

(I) If b,c1,¢9,...,¢n € K are such that P(b;cy,ca,...,cn) =0 and c1,...,c, are all roots of unity,
then b is also a root of unity.
(II) There is o natural number v such that £7,£5, ..., &) are all monomials of A.

We begin with an intermediate lemma.

Lemma 3.1.2. With notation as in Theorem 5.1.1, suppose that (I) holds. Then there is a natural num-
ber r such that the following statement holds:

(L): If byey, ¢, ... cn € K are such that P(b;ci,¢a,...,¢,) =0 and ¢1,. .., ¢, are all m-th roots of unity,
then b" is also an m-th root of unity.
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Proof. The required r will be expressed as the product of the terms r1(d) and e(F) defined below.
We define r1(d) as follows. Let ¢ denote Euler’s totient function. In particular, given a prime p,
©(p*) = p*~1(p—1). For every prime p, let k(p) := max{k = 0 : p(p*¥) < d}. For p > (1 +d), we see that
k(p) = 0. We define r1(d) to be the product (over all primes p) of all the p*(®).

Claim 1: Let M, M’ > 1 be positive integers. If M divides M’ and ¢(M’)/p(M) < d, then M’ divides
T1 (d)M

Proof: The claim follows by noting that ¢(M'/M) < @(M')/p(M), and then expressing M'/M as a
product of prime powers. If M'/M = [ pF with p; distinct primes, then []p(pf*) = p(M'/M) < d. Tt
follows that ¢(p¥') < d, and therefore k(p;) = k;. In particular, pl |r, (d).

Next, let F — K be the subfield generated by all the coefficients of P. Let F be the algebraic closure of
Fin K. Let x : Gal(F'/F) — Z* denote the cyclotomic character. Since F' is a finitely generated field
extension of Q, the image of x is an open subgroup U < Z*. We define e = e(F) to be the smallest
natural number for which U contains ker(Z* — (Z/eZ)*). Let F}, be the cyclotomic extension of F
obtained by adjoining all the k-th roots of unity. The very definition of e(F') implies

(3.1.2.1) [Far : Far] = (M) /(M) whenever e(F)|M|M'.

As a consequence we have:

Claim 2: If m | m’ and [F,, : F;,] < d, then % | 71 (d)e(F).
Proof: Let M = l.c.m(m,e(F)) and M’ = l.c.m.(m/,e(F)). Since Fyp = Fy Fiy, we have

[Far s Ful < [Fow : B < d.

By 3.1.2.1, we get the inequality p(M’)/p(M) < d. By Claim 1, we see that M'/M divides r1(d). Now,
it is clear that m//m divides (M'/M)e(F). It follows that m//m divides 71 (d)e(F), as desired.

We will now show that (I) implies (I’). Let P(b;cy,...,c,) = 0 where ¢; € K are primitive m;-th roots of
unity for i = 1,2,...,n. Note that it suffices to prove (I’) when m = lL.c.m.(mq,...,m;). To prove (I'),
it has to be shown that b™" = 1 where r = r;(d)e(F). Now b is a root of the monic degree d polynomial
P(xz;c1y.cycn) € F(er,¢a,. .. cn)[x]. Tt follows that

[F(b,c1,c2,...,¢q) : Fler,ca,. .. en)] < d.

Clearly F,, equals F(cy,...,c,). If m’ denotes the number of roots of unity in F(b,cy,...,c,), then this
field is F,,s. Thus [F, : F,,] < d. Claim 2 shows m//m divides r. The m/-th power of b is 1. Tt follows
that ™" = 1. This completes the proof of (I) implies (I’).

O

Proof. (Theorem 3.1.1)
We first show that (I') implies (II). Consider P, := (z — &7) (@ — &) - - - (x — £}) € E[xz]. Considerations of
the universal degree d polynomial show:
(i) P € Alz]
(i) if (& — by) -+ - (x — bg) is the factorization of P(z;c1,¢a,...,¢,) € K[z] for ¢1,...,¢, € K*, then
(x —b7)--- (x —b}) is the factorization of P.(z;c1,...,¢p). In particular, if P.(b;c1,...,¢,) =0,
then there exists b’ € K such that P(V';¢q,...,¢,) =0 and b= (b')".
(iii) Under the assumption of (I"), we deduce:
If ¢1, ..., ¢, € K* are m-th roots of unity, and if P.(b;cy,...,c,) = 0, then b is also an m-th root
of unity.
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Before proceeding further, we introduce some terminology to facilitate the reduction from n variables to
one variable. For a natural number h, let

S(h) = {t]* -0 ai] < h,V1I<i<(n—1)}
Let V(h) denote the K-linear span of S(h) in A.

In the following, ¢ will be a ‘large’ odd natural number (to be specified later). Consider the K-algebra ho-
momorphism j : A — Ay := K[tT!] given by setting j(t1) = t, and j(t;) = j(t;_1)? for all 2 < i < n. Ev-
ery integer can be expressed uniquely as aj +asq+...+a,_1¢" " +a,q" with |a;| < % fori =1,2,....,n—1.
This justifies statement (iv) below.

(iv) The ring homomorphism j : A — A; restricts to a bijection from S(q_l) to {t%|la € Z}. Conse-
quently, j also restricts to an isomorphism of vector spaces from V' (45~ ) to Ajg.

We have s, 59,...,8¢ € A such that P, = 2% — 52971 + ... 4 (—=1)%s4. Choose the least k1 and ko such

that s1 € V(kq1) and s; € V(ko) for all 2 <i < d. Let ¢ = 1+ 2max(ks, k1d).
(v) If there are integers az,...,aq such that j(P.) = (x —t*) .- (z — t%¢) then there are monomials
91y ---59d € A such that the product Q = (x — g1) -+ (x — gq4) is equal to P
Proof of (v). By (iv), we obtain g; € S(%l) such that j(g;) = t% for 1 < i < d. We now have

J(P,) = §(Q) where

Q=(z—g)(x—g2)(x—ga) = 2% —sz? ! + sha
In particular, j(s1) = j(s}). This implies s; = s} by the second assertion of (iv), once it has been
noted that
(a) s1 € V(?l) because k1 < ;1,
(b) sy e V(4= 1), because s is the sum of the g; which lie in the same vector space.
Because V' (k) is spanned by monomials, and because s; € V(k;) is itsef the sum of monomi-
als g;, it follows that all the g; belong to V(k1). We see that s; € V(ik1) < V(dk1). Now
S1,--8d, 81, .., sy belong to V(dk:) + V(kz), which by our choice of g, is contained in V(454).
By assumption j(s;) = j(s}), and by (iv) we conclude that s; = s} for all 1 < ¢ < d. This proves
that P. = Q.

d—2 /

+ o+ (—1)%s

and

We retain the F' and e(d) introduced in the proof of Lemma 3.1.2 above. Since P e F[ti, ... tX][z], it
follows that P, also belongs to the same ring. In particular, H := j(P,) belongs to F[t¥1][z]. It remains
to verify the hypothesis of (v) above for H.

By definition, H(z;¢) = P.(x;c,c? cq ,...) and by (iii), if ¢ is a primitive m-th root of unity and
H(b;c) = 0, then b is also an m-th root of unity. It follows that H(z;c) = (z — ¢*)--- (x — ¢*) with
la;| < % foralli=1,2,...,d. Let H' (x;t) := (x —t*')--- (x — t*¢). We can write

(3.1.2.2) H(z;t) = 24 o (=1)'u;(t)z?* and H' (x;t) = B9 (—1)"u(t)z?"

We will now take m = p to be a prime number > e(F'). This ensures that the minimal polynomial of ¢
over Fis ®,(t) = 14+t +...+tP~'. Because H(x,t) — H'(z,t) vanishes when t = ¢ and ¢ = 1, we see that
u;(t) — wi(t) is divisible by lem(®,(¢),t —1) =t — 1.

Let W (k) denote the F-linear span of t* with |a| < k, and choose I; > 0 so that w;(t) € W(l;) for
1=1,2,...,d. Let B5= > max{dly,ls,ls,...,1q} for all i = 1,2, ..., d. To proceed, we observe

(a) W(%) (tp — 1)F[t*!] is zero
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(b) w;(t) e W(E52) for all i = 1,2,....d

(c) uy(t) e W(P3H)
Taking ¢ = 1 in (b), we employ (a) and (c) to deduce that uq(¢) = w}(¢). This implies that u}(¢) belongs
to W (ily) (for all 7), which is contained in W(251) by our choice of p. Now (a) and (b) imply that

2
u;(t) = w}(t) for all 4. This completes the proof of (I’) implies (II).

Finally, note that the implication IT implies I is standard: it follows, for instance, from property (ii) of
P, in the proof of I’ implies II.
O

We believe that a stronger statement should be true. With K and A as before, let P € A[z] be a monic
polynomial. For every natural number m, consider the hypothesis H(m) below:

H(m): If ¢1, ¢, ..., ¢, € K are m-th roots of unity and if P(b;cy, ...,¢,) = 0, then b is a root of unity.
Let F(P) be the field generated by the coefficients of P, X (P) be the finite set of monomials that appear
in P, and let d(P) = deg(P).

Conjecture 3.1.3. There is a constant C(d, F, X) defined for all natural numbers d, all finite subsets X
of the set of monomials of A, and for all finitely generated subfields F of K with the following property:
If there exists a natural number m > C(d(P), F(P), X (P)) for which H(m) is valid, then some power of
every root of P is a monomial in A.

Our proof of the theorem proves the following weaker statement:
If there is a prime p > C(d(P), F(P), X(P)) for which H(p) is valid, then the same conclusion holds.

In reality, the proof uses the set of monomials X (P,) rather than X (P) itself. But the former gives an
upper bound of the latter, so we obtain such a constant C(d, P, X).

3.2. The Galois theoretic weight argument. Let B denote a complete discrete valuation ring, k its
residue field, and K its fraction field. Let K denote a fixed separable closure of K, and I' := Gal(K*/K).
If C is the integral closure of B in K®, then the residue field k of C' is an algebraic closure of k, and we

denote by IV = Auty (k) the group of k-automorphisms of the residue field. In this setting, we have the
usual short exact sequence
1-I1-T350">1

where I := ker(s) is the inertia subgroup, and s is the natural quotient map.

Let £ # char(k) be a fixed prime, and x, : I' — Z; denote the cyclotomic character. On the other hand,
usual Kummer theory gives rise to the standard I'V-equivariant surjection:
c: I —7Zy(1).

In particular, one has the following relation:
(3.2.0.1) clghg™) = c¢(h)X*¢W) vge G hel.
The following hypothesis will be assumed for the rest of the section:

The image of x¢ is open.
For example, this is true if & is finitely generated over its prime field.

Let (A,m4) be a complete local ring with residue characteristic £, Aut(A) the group of ring automor-
phisms, and o : IV — Aut(A) a continuous group homomorphism. Note that Aut(A) = lim Aut(A4/m’; A)
and therefore has the natural inverse limit topology. In the following, we shall assume that the residue
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field of A is finite. Given a finitely generated A-module M, let Autn,(M) := lim Aut(M/m’j M),
where Aut(M /m” M) denotes the group of automorphisms of M /m’ M as an abelian group. Note that
Aut;n, (M) also comes equipped with the natural inverse limit topology.

Definition 3.2.1. A o-compatible pair (M, p) is a finitely generated A-module M equipped with a
continuous group homomorphism p : I' — Aut;y,, (M) such that the following relation holds:

(3.2.1.1) p(g)av = (o(s(g))a)p(g)v Yge T ae A, and ve M.
Remark 3.2.2. Since I := ker(s), it follows that p(h) is an A-module automorphism of M for all h € I.

In particular, we have an induced homomorphism p|; : I — Auta (M), where Auts (M) is the group of
A-module automorphisms of M. Note that Aut (M) = lim Aut (M /m’ M) has the natural inverse limit
topology, and p|; is continuous with this topology (the subspace topology on Aut (M) — Autn, (M) is
the aforementioned inverse limit topology). Since the residue field of A is finite, it follows that the kernel
of the natural surjection
AutA(M) — AutA(M/mA)

is a pro-f-group. In particular, after passing to a finite separable extension K’ of K, and replacing B by
the integral closure of B in K’, we may assume that the image of p|; in Aut4(M/my) is trivial. On the
other hand, no subquotient of the kernel of ¢ : I — Z,(1) has non-trivial ¢-torsion. It follows that pl;
factors factors through c i.e. there exists

P Zg(l) — AutA(M)
such that poec = pls.

In the following, we assume that the o-compatible pair (M, p) satisfies the hypotheses above, and in
particular a p is fixed for such a pair.

Lemma 3.2.3. Let (M, p) be a o-compatible pair as above. In particular, we assume that p|; factors via
p as above. Let ve M such that p(I)(Av) c Av, and P, := Ann(v) c A denote its annihilator.
(1) For g € IV, set Py, := Ann(p(g1)v) for some lift g1 € T' of g. Then Py, is independent of the
chosen lift.
(2) Let g e I'. Then o(g)P, = Py,. One has an induced homomorphism

g-[=1: (A/Py)" = (A/Pg)*
given by sending the class [a] of a € A to g - [a] := [0(g)a]. This construction is compatible with
the group structure of I'. In particular, (¢ - [-]) o (g-[-]) = d'g - [-]-
(8) Let 0, : Zy(1) — (A/P,)* be defined as follows. For h € Zy(1), p(h)v = av for some a € A. Let

0, (h) := [a] where [a] is the class of a in A/P,. Then 0, is a well-defined homomorphism.
(4) Let g e T". Then p(I)(A(p(g)v)) < A(p(g)v). Moreover, the following diagram commutes:

Zo(1) — 2 (A/P,)*

bl

Ogo
Zo(1) —=5 (A Pyy)™
Here the TV action on the left is via the cyclotomic character.

Proof. (1) Let go be another lift. We claim that Ann(p(g1)v) = Ann(p(g2)v). Let a € A such
that ap(gi)v = 0. By o-compatibility, this is true iff o(s(g;))(a)v = 0. On the other hand,

o(s(gr ")) = o(s(92))-
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(2) The first part results from a direct computation using the definition of o-compatibility. If g € T"
and a € P,, then o(g)(a)(p(g)(v)) = p(g)(av). It follows that o(g)P, < Py,. A similar argument
gives the reverse inequality. The compatibility with group structure follows easily from the
definition.

(3) In order to see that 6, is well defined, suppose p(h)v = a’v for some other @’ € A. Then o’ —a € P,.
It follows that 6, (h) = [a] is well-defined. Note that [a] € (A/P,)*. If p(h~!)v = av, then

v =p(h)(p(h~")v)) = p(h)(av) = aav.
Here the last equality follows since p is A-linear. It follows that aa — 1 € P,, and therefore
[a] € (A/P,)*. We leave it to the reader to show that 6, is a group homomorphism.

(4) Let k € I, and a € A. Then k' = g~ 'kg € I, and we have p(k')(v) = av for some a € A. It
follows that p(k)(p(g)v) = o(g)(a)(p(g)(v)). Therefore, p(I)(p(g)v) = A(p(g)v). This proves the
first assertion. Now let h € Zy(1) and g € IV. Then g - 0,(h) = [0(g)a] where 0,(h) = [a]. On
the other hand, 64,(g - h) = [b] where p(g - h)(p(g)v) = b(p(g)v). Here g - h denotes the action
by the cyclotomic character. Let h € I be a lift of h. Then, by 3.2.0.1, we have p(g - h)(gv) =

plghg™)(p(g)v) = p(g)(av) = a(g)(a)(p(g)v). Tt follows that [b] = [o(g)(a)]. .

3.3. Completion of Proof of Theorem 1.1.1. Recall, we are in the setting of Theorem 1.1.1. In
particular, we are given a tuple (X,Y, f,G) and a curve C, all over C, such that:

(1) Let G := G x C, and 7 : G — C denote the projection map

(2) f: X — C\¢ is a proper map

(3) F: X\Y — Glc\c, is a morphism over C'\co
We assume that there is an exact sequence

1-T->-G—-A-1

where T' = G}, is an r-dimensional torus, and A is an abelian variety.

Remark 3.3.1. We fix a finitely generated subfield k = k = C (where K is a fixed algebraic closure), so
that our data above is defined over K. In particular, (X,Y, f,G), F', C are defined over K and ¢y € C(K).
Below, we shall add a subscript & or k to denote the corresponding object. For example, X}, is the variety
over k, and X is its base change to C etc.

We now restrict to a small disk A centered at ¢g, and consider the constant local system % = Z[m1 (G, €)]
on A, and the corresponding local system L of 7*(%)-modules on G. Recall, £, is identified with the local
system Z[71(G)] for t € A. We now consider R'fy(j1F*L). First, note that on a small enough punctured
disk A* this is a local system of R := Z[m (G, e)]-modules. Moreover, as a consequence of proper base
change, its stalk at a point ¢ is H* (X, ji F¥*L:) = HY( Xy, Ve; FF(Z[m1(G)]). Here j; : Xi\Y: — X; is
the natural inclusion. Hence, we have a local system of R-modules, and the corresponding monodromy
representation. Suppose now that the cohomology groups above vanish for all j # ¢, and is a free
R-module in degree i. We would like to show that the eigenvalues of monodromy are monomials. In
particular, we have the monodromy representation

pimi(A%,s) — GLa(H (X", Y™, FFZ[m (G)]))-

Let P(z) = (z — &) - (x — &) be a factorization of the characteristic polynomial of the canonical
generator o € m(A*, s) as in Theorem 1.1.1. We wish to show that there is an 7 such that & € 71 (T, ¢)
for all 1.

(1) We first show that there is a natural number r such that §; is a monomial for all 1 < j < d
ie. & € m(G). We only need to verify that P(z) verifies hypothesis (1) of Theorem 3.1.1.
We will see that this follows from an application of the classical local monodromy theorem.
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Consider the etale covering [m] : G — G given by multiplication by m, and let G,, denote the
kernel. As before, let (X\Y),, — X\Y denote the corresponding etale covering (given by base-
change along f) with Galois group G,,, and denote the normalization of the above covering by
X, — X. Note that (X\Y),, = X,,\Y;, where Yy, : X, xx Y. Let R, denote the group-ring
of Gy, and jp, : X \Yy — X, denote the inclusion. The sheaf R, ®g jiF*L is identified
with the push-forward to X of (j,,)iZ. This identifies R,, ®r H*(Xy, iF;*L;) with the i-th
cohomology of the inverse image of ¢ of the pair (X,,,Y,,) i.e. H (X4, Yim;Z). In order to
see this, note that R, ®" RT(Xy, i F L) =~ RT(Xy, Ry ® 511 F¥Ly). On the other hand, by our
assumption of freeness and only one non-vanishing cohomology group, R,, ®" RT'(X¢, i F* L) =
R,, ®r H Xy, iF¥L;).> The classical monodromy theorem applies here; in particular, if we
denote by P,,(x) € C[z] the characteristic polynomial of monodromy action on H*(X,, ¢, Yo 13 Z),
then the roots of P,,(z) are roots of unity. Let P € R,,[z] be the image of Pr € R[z]. The
tensor product C ® R, is the product of copies of C indexed by the (cy,...,¢,) where ¢ =1
for all i. Therefore, under this identification, the image of P, (x) (in C[z]) is the product of
Pr(z;c1,...,¢,) over all (cy,...,c,) where ¢ =1 for all i. On the other hand, by the discussion
above, this product of polynomials is precisely P,,(x). As we have seen, the latter has roots given
by roots of unity. We conclude that P(x) € R[x] satisfies hypothesis (1) of Theorem 3.1.1.

(2) Inorder to deduce that the monomial must lie in 71 (7', €), we shall apply the comparison with etale
cohomology (as in 2.2) and use a weight argument. Specifically, let M, := H(X;, Yy; fFZ[m1(G)]),
R = Z[m(G,e)], and J < R denote the augmentation ideal. Let B denote the completion of
Oc,.c at its maximal ideal. By choosing a local parameter ¢ (at ¢), we may identify B = k[[t]]
with fraction field K = k((¢)). Let K be a fixed algebraic closure of K with residue field k.
Consider now the etale cohomology group M.t := @ert(XRa Y&; f}(Vﬁt’M) with V;}f’ek as in
2.1.3. Recall, M, ¢ is naturally a Z[[7¢*(G g, €)]]-module with a action of I' = Gal(K/K) semi-
linear action (see 2.1.7). Since etale fundamental groups are invariant under algebraically closed
field extensions, we may identify this with Z[[7{ (G, e)]] = Z¢[[7§*(Gc,€e)]] =: A. Note that A
is the /R + J-adic completion of R, and set M = M, ®r A. We consider M ¢ as an A-module
(as before via Grothendieck’s comparison theorem for the etale fundamental group) and following
the discussion in section 2.2, we have a natural isomorphism M =~ M., ¢ of A-modules compatible
with the monodromy action. More precisely, the monodromy induces a natural Z-action on M.
On the other hand, one has an action of inertia I = 2(1) on M, and the two actions are
compatible under the canonical inclusion Z < Z =~ Z(1).

(3) Recal that A has a natural (continuous) I'-action, which factors through IV = Gal(k/k) (with
notation as in section 3.2). We now view M as an A-module with a I'-semi-linear action as in
Definition 3.2.1.

(4) We now work with M, A, B, and " as above. We assume that our data satisfy the hypotheses of
section 3.2. In particular, the action of inertia factors through Z,(1) (recall, we can always achieve
this upto replacing K by a finite extension). Our loop is the element 1 € Z, and we consider it
as an element «y € Z¢(1) by the discussion above. We are concerned with the eigenvalues of p(7)
(in the notation of 3.2).

(5) Let A, denote the localization of A at JA, and A’ denote the completion of A, at its maximal
ideal JA. Then one has a canonical isomorphism ¢ : A" — S/'y?n(@e (Qr®71(G, e)) where the right
side is the completion of the symmetric alebra. Here :~!(exp(h)) = h for all h € Z, @ 71(G, €)) =
A*. Note that Z; ® 71 (G, e)) has the natural I"-action (identifying it with the corresponding
Tate module). On the other hand A, and therefore A* has the natural I-action; the inclusion
Zy®m(G,e)) € A* is I-equivariant.

3Alterna‘cively, we could instead assume all cohomology groups are free modules in order to obtain the same conclusion.
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(6) Consider an eigenvalue A\ of v, and v € Mp the corresponding eigenvector. We use the same
notation v to denote 1 ® v € M. After passing to a finite extension, we may assume that
A € m(G,e) ie. that it is a monomial. We would like to show that A € m1(T,e). This data
gives rise to a morphism 6 : Z;(1) - A* with notation as in Lemma 3.2.3. Note that in the
current setting M is a free A-module, and A is a domain. In particular, P, = Py, = 0. One has
O(v) = A and therefore 6(y™) = A™ for all m € Z. By continuity, we see that this holds for all
m € Zg. Now tof(y) = XA e Q ®m1(G,e). On the other hand, I' ‘equivariance’ (i.e. the last
part of Lemma 3.2.3) now shows that the action on A must be via the cyclotomic character, and
therefore A € m1 (T, e). (The point being that the monomials coming from the Tate module of the
abelian variety have different weight).

4. PARAMETRIZED BASIC LEMMA

In this section, we prove Theorems 4.5.3 and 4.5.4. These state ents are z}lpplications of Proposition
4.4.1 below, which is a parametrized version of Beilinson’s le I@ ore precisely, we prove below a
parametrized version of the Basic Lemma (second form) in r@%) page 475). The last sub-section applies
these results to prove Theorem 1.1.5.

4.1. Conventions. A subfield k& of C remains fixed throughout, and we work with the category of
separated k-schemes of finite type. Given such a k-scheme X, the set X (C) of its C-rational points,
inherits its classical topology and the sheaf of holomorphic functions. This local ringed space will be
denoted by X ™. We will utilize only the topology of X" but not the sheaf O%" of holomorphic functions.
The main objects considered below are sheaves of abelian groups on X™; these will be referred to simply
as “sheaves on X”. Given a morphism of scheme f : X — Y over Spec(k), we will abuse notation further
and write RYf,F in place of RY(fan)sxF

4.2. Base Change, Cohomological Base Change, and the sheaf 7.

A : We will often consider pairs (X ER S, F) where f is a morphism of k-schemes and F is a
sheaf on X. Given an S-scheme T, we obtain the base-changed pair (Xp — T, F|x, ) where
X7 =X xgT and Flx, = p ' F with p : Xr — X denoting the first projection. Denoting by
f: X —> S, g: T — S the given morphisms and by fr : X7 — T the second projection, we have
a natural base change morphism g 1 RIf. F — R(fr)«F|x,-

B : We say that the pair (X — S, F) satisfies cohomological base-change (CBC) if

_1qu*]:_’Rq(fT)*]:|XT

is an isomorphism for all ¢ > 0 and for all S-schemes T'.

C : If any two of the members of a short exact sequence of sheaves on X satisfy CBC with respect
to a given morphism X — S, it follows from the definition that the third also satisfies CBC with
respect to X — S.

D : Given a closed subscheme Y of X, and a sheaf F on X we define F¥ by

FY = ker(F — i Fly),

where i : Y < X is the inclusion morphism.
E : If Y is closed in X and if CBC holds for both (X — S,F) and (Y — S, F|y), it follows from
4.2 C above that CBC holds for (X — S, FY).

F : As a corollary, if CBC holds for (X ER S, F), then CBC holds for (X — S, FY) where
N = f~'M and M is a closed subscheme of S.

G : If CBC holds for (X ER S, F) and also for (S % T, Rif,F) for all ¢ > 0, then CBC holds for

(X of, T, F). This assertion is immediate from the Leray spectral sequence.
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H : We remind the reader that CBC holds for (X ER S, F) whenever f is a proper morphism; in
particular, when f is a finite morphism.

line

4.3. The affine line.

Lemma 4.3.1. Let m: Ay — S be the projection and Z be a closed subscheme of Ak such that Z — S
is a finite surjective morphism. Let F be a sheaf on A} such that

(i) the restriction of F to the complement of Z is a locally constant sheaf, and
(i) Flz = 0.
Finally, let M be a closed subscheme of S and let N := 7—'M. Then the following assertions hold:
I: (A5 S, F) satisfies CBC.
II : RimyF =0 for all ¢ # 1.
III : For every s € S(C), there are x; (1 <i<r)inm 1(s) and a non-canonical isomorphism

o(s) : (Rlﬂ*}—)s — @1 Fz,-

If R is a sheaf of rings on S, and if F is a sheaf of 7~ *R-modules, then ¢(s) is an isomorphism
of Rs-modules.
IV : With M and N as above, properties I and II also hold for (A} 5 S, FNY; see 4.2 D for the
definition of FN.
V : Assume that Z~Z n N — S~ M is etale. Then R'myF restricts to a locally constant sheaf
on S~ M.

Proof. Parts I and IT are special cases of propositionl.3A and corollary 1.3B of (F]l page 477). Moreover,
Remark 1.4 of (IF%, page 479) proves part III. The isomorphism ¢(s) depends on the choice of a tree in
77 1(s) with 771(s) n Z as its vertices, and the x; are interior points of its edges. The isomorphism is
obtained from a Mayer-Vietoris sequence, and therefore commutes with all endomorphisms of the given
sheaf. In particular, if F is a sheaf of 7~ !R-modules, the isomorphism chosen is in fact an isomorphism
of Rs-modules. Part IV follows from 4.2 F. The point is that I and IT are valid for the base-changed pair
(N — M, F|n) since this pair satisfies (¢) and (i¢). Finally, Remark 1.5 on page 479 of ?H?%), proves V.
O

4.4. The general case.

cgeneralcase| Proposition 4.4.1. Let S be an irreducible scheme and n its generic point. Let m: X — S be an affine
morphism such that dim X, = n. Let F be a sheaf on X such that F|y is locally constant for some open
dense U < X. Then there is a closed subscheme Y of X with dimY; < n and a nonempty open T' < S
for which the following statements are valid for FY :
(A) The base-changed pair (X7 — T, FY |x,.) satisfies CBC, with F¥ as in 4.2 D.
(B) Rimy(FY)|x, =0 for all ¢ # n, and R"74(FY)|x, is a locally constant sheaf.
(C) For every s € S(C), there are 1,2, ...,z € m(s) and an isomorphism

w(s): R”ﬂ*(]:y) = ®;_1Fu-

If F is a sheaf of 7 1R-modules, where R is a sheaf of rings on S, then (s) can be chosen to
be an isomorphism of Rs-modules.

(D) In particular, if Flu is a locally free sheaf of 71 R-modules of finite rank, then R'my(FY) is a
locally free sheaf of R-modules of finite rank, when restricted to T .

Proof. The proposition is a statement about affine morphisms 7 : X — S where the target S is irreducible.

Given a sheaf F on X, we express m : X — S as a composite X ER A% L, 8. We will assume
the proposition has been proved for p, and that an even stronger form of the proposition is valid for
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f X — A%. More precisely, we will assume that there is a closed subvariety Y < X (dim(Y;) < n) and
a nonempty open 1" < S such that the following hold:

(A’) The base-changed pair (X7 — A%, FY | x, ) satisfies CBC,

(B) RUfe(F¥)x, =0 forall ¢ # n—r, and R"" f(FY)x, is a locally constant sheaf on Al..

(C’) The obvious analogue of part (C) is valid for (Xp — A%, F).

The proposition for f : X — A’y would require an arbitrary nonempty subset of A'y, whereas the above
stronger form allows only open subsets of the type A7.
To continue, in view of (B’), we are in a position to apply the proposition to the sheaf
G := R" " f,F¥ and the morphism p : A’y — S and obtain a closed subvariety M < A’y and a nonempty
T’ < S satisfying

(A”) The restriction of G to A%, satisfies CBC for pp+ : AL, — T7

(B”) R%p4G|7 is zero for q # r, and is locally constant for ¢ =n —r.

(C”) the obvious analogue of part(C) of the proposition holds for R""p,G.

Let N := f~!M and W := Y U N. From (A’) and 4.2 F, we see that CBC holds for the restriction
of the sheaf FW = (F¥)N to X7 and the morphism X7 — A%. Clearly R* " f 7~ = GM. In view
of (A”,B’B”) it follows that parts (A) and (B) of the proposition hold for 7 : X — S with the open
T T < S and the closed W < X. That (C’) and (C”) imply (C) is evident.

We will complete the proof of the proposition for X = A% in Step 1 below and the general case in Step
2. Both cases are essentially Noether normalization at 7.

Step 1. We will prove the proposition for 7 : A§ — S by induction on n > 0, the case n = 0 being
trivial. The sheaf F on A% is locally constant on the complement of a (reduced) hypersurface V' of A%.
After a linear change of variables, we may assume that the projection f : A% — Agfl restricts to a finite
morphism Vp — Ag_l for some nonempty open 7' S. In view of 4.3, we see that FY satisfies the above
(A B,C)if Y = f~'D and (V\V nY)r — (A""'\D)7 is etale. Thus the stronger form has been proved
for (A%, F) and the result follows by induction on n.

Step 2. Noether normalization for X, yields a morphism f : X — A%, such that fr : X7 — A% is a finite
morphism. Choose a a closed subvariety D & A% such that

(a) (X\f71D)r — A™\D)r is etale,

(b) the restriction of F to the complement (A™\ D)7 is locally constant. We see then that Y = f~1D sat-
isfies the requirements of (A’,B’,C’). Because the proposition has been proved for A% — S, the proposition
for the sheaf F on X follows. g

4.5. Weakly constructible sheaves.

Definition 4.5.1. A sheaf 7 on X (in the sense of 4.1) is weakly constructible if there is a finite collection
71,25, ..., Z of locally closed subvarieties of X such that

(i) F, when restricted to Z;, is a locally constant sheaf, for every i = 1,2,....r
(i) X =21 020U Z,.

Remark 4.5.2. (1) Weakly constructible sheaves form an abelian category.
(2) If R is an arbitrary sheaf of rings on X, then weakly constructible sheaves on R-modules on X
also form an abelian category.

Theorem 4.5.3. Let m : X — S be an affine morphism, where S is irreducible with generic point 7.
Let n = dim X,. Let F be a weakly constructible sheaf on X. We consider increasing sequences of
closed subvarieties Xo < X1 < ... € X,, = X with dim(X,), <1 for all i =0,1,2,.... We denote by m;
the composite X; < X — S. Such a sequence is admissible if the sheaves F; := FXi-1|x, satisfy the
conditions below for some nonempty T < S':

(A) The sheaf F; satisfies CBC for the given morphism (X;)r — T
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(B) Ri(m;)sF; is zero for q # i and is locally constant for q = i, when restricted to T.
We then have:

(I) There exists an admissible increasing sequence.
1I) More generally, given an increasing sequence X! : 1 = 0,1,...,n that satisfies the dimension
K3
restriction, there is an admissible increasing sequence X; : ¢ = 0,1,...,n such that X c X; for
alli=0,...n

Proof. Part (I) follows from part (II) by taking X/ = & for ¢ < n For part (II), one constructs the
sequence X; : 0 < i < n by decreasing induction on i. Assume that X; has been chosen so that X < X;.
If dim(X;), <14, we take X;_; = X;. We now assume dim(X;), = i. Because F is weakly constructible,
it follows that its restriction to X; is also weakly constructible. Thus F restricts to a locally constant
sheaf on an open dense subset U of X;. Let Z = X/ ; u (X;\U). We apply Proposition 4.4.1 to
(m; + X; —> S, F?|x, and obtain a closed subvariety Y < X; such that the sheaf FZ“Y |y, satisfies all
parts of the proposition. We define X; ;1 =Y u Z. g

Theorem 4.5.4. With notation and assumptions as in the previous theorem, assume that F is a sheaf of
7~ YR-modules, where R is a locally constant sheaf of rings on S. Assume also that the stalk of F at every
point of x € X(C) is a finitely generated free R (y)-module. Define a sequence to be strongly admissible
if the extra condition: “R'(m;)+F; is a locally constant sheaf of finitely generated free R-modules of finite
rank, when restricted to a nonempty open subset of S” holds.

Then both parts of the above theorem are valid with ‘admissible’ replaced by ‘strongly admissible’.

The proof of theorem 4.5.3 is valid for theorem 4.5.4 as well.

4.6. Proof of Theorem 1.1.5. In the setting of Theorem 1.1.5, M := H(X,,Ys; f#Z[m1(G;)]) is no
longer assumed to be a free R-module (concentrated in one cohomological degree) and our abelian scheme
G is no longer assumed to be split. We now explain how to deduce Theorem 1.1.5 from Theorem 1.1.1
and Theorem 4.5.4.

(1) First, note that the proof of Theorem 1.1.1 is valid in the setting where the semi-abelian scheme
is not necessarily split (still under the assumptions that the relevant cohomology group is free in
degree i and zero in other degrees). The key point is that the local system £ is constant in the
small disk, and G — S is a topological fibration, and therefore the cohomology group M has an
R-linear monodromy action.

(2) Suppose now that 7 : X — S is an affine morphism. By Theorem 4.5.3, our M is a sub-quotient
of an object appearing of the type appearing in 1.1.1. Therefore, by Theorem 1.1.1 (in view of
(1) above), it is annihilated by an element of the type given in 1.1.5.

(3) Note that if X is quasi-projective, then we can immediately conclude from (2) via Jouanalou’s
trick. More precisely, the statement is local around ¢ € S, and therefore we may assume S is
affine. We now use Jounalou’s trick to replace X by an affine scheme over X which is a vector
bundle over X.

(4) In general, first fix a finite affine cover (U;);e; of X. Then we may consider the Cech spectral
sequence for RF, (recall F : X — C is the structure map) for this cover. After restricting to a
small enough punctured disk around ¢, we may assume that all derived push-forwards appearing
in the spectral sequence are local systems on this punctured disk. One can achieve this since we
have a finite cover, and our complexes are cohomologically bounded. Now one uses the fact that
the objects being dealt with form an abelian category. To be precise, we consider the category
of R-modules with 1 (A*, s)-action such that the eigenvalues of monodromy are roots of Toric
monomials (i.e. monomials that come from the Torus). This is an abelian category.
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