
LOCAL MONODROMY OF GENERALIZED ALEXANDER MODULES

MADHAV NORI AND DEEPAM PATEL

Abstract. Given a semi-abelian variety G over a field k Ă C, a morphism f : XzY Ñ G of algebraic

varieties, and a closed sub-variety Y Ă X, one can consider the cohomology groups

HipXan, Y an; f˚Zrπ1pGqsq

where Zrπ1pGqs is the ‘universal local system of Zrπ1pGpCq, eqs-modules’ on GpCq. If G is a Torus, then

classical Alexander modules are examples of such groups. In this article, we study local monodromy as
we vary the data pX,Y,G, fq in a family over a curve. In particular, we obtain an analog of the classical

local monodromy theorem in this context. Our tools include a Mordell-Lang type result, a parametrized

version of the basic lemma due to Beilinson, and a Galois theoretic weight argument in the style of
Grothendeick’s Galois theoretic proof of quasi-unipotence of local monodromy.
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1. Introduction

In the following, we fix a field k of charpkq “ 0 and an embedding k ãÑ C. Let G denote a semi-abelian
variety over k and e P Gpkq denote the identity. In this setting, we may consider the local system Zrπ1pGqs

on GpCq (cf. 2.1.1). Its stalk at a point y P GpCq is given by Zrπ1pG; e, yqs, i.e., the free abelian group
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over homotopy classes of paths from e to y (see 2.1.1). It is naturally a local system of (free rank 1)
Zrπ1pG, eqs-modules.1

Let X be a variety over k, Y Ă X be a closed subvariety, and f : XzY Ñ G a morphism of varieties.
One can consider the relative singular cohomology groups

HipXan, Y an; f˚Zrπ1pGqsq :“ HipXan, j!f
˚Zrπ1pGqsq,

where Xan and Y an are the associated complex analytic spaces and j : XzY ãÑ X is the natural inclu-
sion.2 In this article, we study the local monodromy of these objects as we vary them in a family. We
note that a more general local monodromy theorem in this context was proven in

NP1
[6] using the theory of

nearby cycles. The goal of this article is to provide a different proof via Galois theory and bypassing the
theory of nearby cycles.

In a subsequent article, we shall construct a universal abelian category, denoted GMpk,Gq, of ‘Gamma
motives over G’. This category comes equipped with a canonical conservative and exact Betti realization
functor

RB : GMpk;Aq Ñ MpZrπ1pG, eqsq.

Here, MpZrπ1pG, eqsq denotes the category of finitely generated Zrπ1pG, eqs-modules. Any quadruple
pX,Y, f, iq, with pX,Y, fq as before and i a nonnegative integer gives rise to an object HipX,Y, fq P

GMpk,Gq whose Betti realization is HipXan, Y an; f˚Zrπ1pGqsq. From this perspective, the present article
studies the local monodromy of a family of ‘Gamma motives’. We do not discuss Gamma motives in this
article, since the monodromy results and tools presented here are likely to be of wider interest.

1.1. The Local Monodromy theorem. We begin by recalling the classical local monodromy theorem
due to Grothendeick (

SGA7-V1
[1]). In this section, we work in the setting of complex algebraic varieties. Let C

be a smooth (connected) curve over C, c P C be a fixed closed point, and F : X Ñ C a morphism. Let
∆ denote a small disk centered at c. The restriction of RiF˚Q to a small enough punctured disk ∆ˆ is
a local system with stalk RiF˚Qt “ HipXt,Qq (t P ∆˚q. In particular, for a general point t P ∆ˆ and a
fixed base point s P ∆ˆ, one has the corresponding local monodromy representation:

ρ : π1p∆ˆ, sq Ñ GLpHipXt,Qqq.

In this setting, the classical local monodromy theorem states that, if σ denotes the canonical generator
of π1p∆ˆ, sq (i.e. the counter-clockwise loop), then the eigenvalues of σ are roots of unity.

One of the main results of this article is an analog of the aforementioned local monodromy theorem in the
context of generalized Alexander modules discussed above. For simplicity, we begin by recalling the main
statement of our monodromy theorem in the following slightly specialized setting. With C as above, we
assume that we are given the following data:

(D1) A morphism F : X Ñ C and a closed subscheme Y Ă X,
(D2) A morphism f : XzY Ñ G (over C) where G :“ G ˆ C. In particular, π : G Ñ C is a split

semi-abelian scheme.

With these assumptions, we have the constant local system R :“ Zrπ1pG, eqs of R :“ Zrπ1pG, eqs-modules
on the curve C and a local system L of π˚pRq-modules on G, such that L|Gt

is the local system Zrπ1pGqs

on G for each t P C. For each t P C, consider the resulting morphism ft : XtzYt Ñ Gt – G. The
cohomology groups HipXt, Yt; f

˚
t Zrπ1pGqsq form a local system on a sufficiently small punctured disk ∆ˆ

centered on c P C. For simplicity, we assume that the cohomology group HipXt, Yt; f
˚
t Zrπ1pGqsq is a free

R-module for all t P ∆ˆ. Moreover, we assume that the aforementioned cohomology groups vanish in all

1We use the algebraic geometry convention for composition of paths i.e. γ1 ¨ γ2 :“ γ1 ˝ γ2.
2In the following, we often drop the superscript ‘an’ in the notation for the associated complex analytic space.
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other degrees (i.e. for all j ‰ i). In this setting, the cohomology groups HipXt, Yt; f
˚
t Zrπ1pGqsq form a

local system of free R-modules on ∆ˆ. Note that the monodromy action on Rt “ Zrπ1pG, eqs is trivial,
and therefore the monodromy action on HipXt, Yt; f

˚
t Zrπ1pGqsq is R-linear. In particular, for a general t

(and fixed base point s P ∆ˆ), we have a natural monodromy representation:

ρ : π1p∆ˆ, sq Ñ GLRpHipXt, Yt; f
˚
t Zrπ1pGqsqq.

Let K be a fixed algebraic closure of the the fraction field of R. By definition, we have an extension

1 Ñ T Ñ G Ñ A Ñ 1,

where T is a torus, and A is an abelian variety. In particular, we have a natural inclusion

π1pT, eq ãÑ Rˆ ãÑ Kˆ.

Let P pxq P Rrxs denote the characteristic polynomial of the canonical generator σ of π1p∆ˆ, sq.

thm:monv1 Theorem 1.1.1. With notation as above, let P pxq “ px ´ ξ1q ¨ ¨ ¨ px ´ ξdq be a factorization of P in K.
Then there exists a natural number m such that ξm1 , ξm2 , . . . , ξmd lie in the image of π1pT, eq.

We may identify R with the Laurent polynomial ring Zrt˘
1 , . . . , t

˘
r`r1 s where r “ dimpT q, r1 “ 2 dimpAq,

and the natural inclusion π1pT, eq ãÑ R has image given by the monomials in the ti for 1 ď i ď r. With
this notation, the theorem posits the existence of a natural number m such that the m-th power of the
eigenvalues of monodromy are monomials of the form ta1

1 ¨ ¨ ¨ tar
r where ai P Z.

Remark 1.1.2. Note that if G is taken to be a point, then the theorem specializes to the classical
monodromy theorem.

Remark 1.1.3. The assumption that HipXt, Yt; f
˚
t Zrπ1pGqsq is free in degree i and vanishes in all other

degrees can be replaced by simply requiring freeness in all degrees.

As an immediate consequence, one has the following corollary.

Corollary 1.1.4. With notation and assumptions as in Theorem 1.1.1, suppose furthermore that G is
an abelian variety. Then the eigenvalues of monodromy are roots of unity.

Proof. In this case, the torus is trivial and π1pT, eq “ 1. The result now follows from the previous
theorem. □

In the following, we prove the theorem in a more general setting. More precisely, we do not assume
that the semi-abelian scheme G is split and allow for more general semi-abelian schemes G Ñ C. We
also remove the assumptions of free-ness and ‘only one non-vanishing degree’ on the cohomology groups
considered above. More precisely, let Y,X and C be as above. Suppose we are given a semi-abelian
scheme G Ñ C (with identity section e : C Ñ G), a morphism f : XzY Ñ G over C such that there is a
global extension (over C):

1 Ñ T Ñ G Ñ A Ñ 1

where T is a torus (over C), and A is an abelian scheme (over C). In this setting, one has the following
data (see 2.1.4):

(1) A local system R on C with fiber Rt “ Zrπ1pGt, etqs.
(2) A local system L of π´1R-modules such that L|Gt

“ Zrπ1pGtqs.

Since G is globally an extension of A by T , the morphism π : G Ñ C is a topological fibration. The
local system R is constant on a small disk ∆ centered at c, and we identify it with its fiber R :“ Rc “

Zrπ1pGc, eqs. The cohomology groups HipXt, Yt; f
˚
t Zrπ1pGtqsq form a local system of R-modules on a

small disk punctured disk ∆ˆ as before. In particular, one has a natural monodromy representation:

ρ : π1p∆ˆ, sq Ñ AutRpHipXt, Yt; f
˚
t Zrπ1pGtqsqq.

Let T :“ Tc, and K denote the algebraic closure of the fraction field of R.
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thm:monv2 Theorem 1.1.5. Let σ be the canonical generator of π1p∆ˆ, sq. With notation as above, there are natural
numbers r, k and m1, . . . ,mk P π1pT, eq such that

pσr ´ m1q ¨ ¨ ¨ pσr ´ mkqHipXt, Yt; f
˚
t Zrπ1pGtqsq “ 0.

Note that, as before, if G is an abelian scheme, then one has all mi “ e and the local monodromy is
quasi-unipotent.

rem:arbmorphisms Remark 1.1.6. The content of the theorem is local around c. In particular, the existence of a global
extension 1 Ñ T Ñ G Ñ A Ñ 1 is only required in a neighborhood of c.

1.2. Strategy of Proof. Our proof of the monodromy theorem is based on three ingredients:

(1) A Mordell-Lang type statement: More precisely, let K denote an algebraically closed field of
characteristic 0 and A “ Krt˘1

1 , t˘1
2 , ..., t˘1

n s denote the corresponding Laurent polynomial ring.
A monomial in A is an element of the form ta1

1 ta2
2 ¨ ¨ ¨ tan

n for some pa1, ..., anq P Zn. Finally, let

E :“ Kpt1, . . . , tnq denote the fraction field of A, and E denote a fixed algebraic closure of E. In
this setting, we have the following result.

thm:algebraic Theorem 1.2.1. Let P px; t1, t2, ..., tnq P Arxs be a monic polynomial and let P “ px´ξ1q ¨ ¨ ¨ px´

ξdq be its factorization in E. The following assumptions on P are equivalent:
(I) If b, c1, c2, . . . , cn P K are such that P pb; c1, c2, . . . , cnq “ 0 and c1, . . . , cn are all roots of

unity, then b is also a root of unity.
(II) There is a natural number r such that ξr1 , ξ

r
2 , . . . , ξ

r
d are all monomials of A.

The above theorem follows from the Mordell-Lang conjecture in the Tori setting due to Laurent
(
Laurent
[4]). However, we give a completely self-contained elementary proof of the theorem in section
3.1 below. In would be interesting to see if the proof given here can be extended to cover the
more general statement of loc. cit. We hope to come back to this problem in the future.
Given the above theorem, an application of base change and the local monodromy theorem for
unipotent local systems in the classical setting immediately allows one to deduce a slightly weaker
version of Theorem 1.1.1 from the Theorem above. Namely, one obtains the analog of Theorem
1.1.1 where the eigenvalues are monomials (but not necessarily that they come from the Torus).

(2) A Galois theoretic weight argument: We define an etale analog of our cohomology groups in the
setting where all our objects are defined over a field k Ă C (see 2.1.7). Over the algebraic closure
these come equipped with a Galois action, and one has Artin’s comparison theorem identifying
these etale objects with the relative cohomology groups above (after passing to profinite comple-
tions at the level of fundamental groups). A weight argument using the Galois action allows one
to deduce that the monomials appearing as eigenvalues must come from the Torus. We refer to
sections 3.2 and 3.3 for the weight argument. This completes the proof of Theorem 1.1.1.

(3) A parametrized ‘Basic Lemma’: Finally, we prove a parametrized version of the ‘Basic Lemma’
due to Beilison in the form stated in p

N1
r5sq. This allows us to deduce 1.1.5 from 1.1.1 (see 4.6). We

refer to section 4 for the precise statement of the parametrized basic lemma and the application
to Theorem 1.1.5.

1.3. Contents. In Section 2 we recall some basic background and define our etale objects. In Section
3, we prove Theorems 1.1.1 and 1.2.1. Finally, in Section 4 we prove the parametrized basic lemma and
apply it to prove Theorem 1.1.5.

Acknowledgements: We would like to thank V. Srinivas for bringing to our attention..
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2. Preliminaries

In this section, we recall some background and basic facts about our cohomological objects. We consider
etale analogs of our cohomological objects, and compare these with the Betti analogs.

2.1. The Betti realization. As before, let k be a fixed field of characteristic zero equipped with a fixed
embedding σ : k ãÑ C, G denote a fixed semi-abelian variety over k, and e P Gpkq the identity. We also
fix an algebraic closure k Ă k̄ Ă C.

2.1.1. (The local system Zrπ1pGqs) The category of local systems on Gan is equivalent to the categorypara:universallocalsystem
of Zrπ1pG, eqs modules. In particular, the identity map π1pG, eq Ñ π1pG, eq gives rise to a natural local
system on Gan, denoted by Zrπ1pGqs. The fiber of Zrπ1pGqs at a point y P GpCq is given by Zrπ1pG; e, yqs.
Here, π1pG; e, yq denotes the homotopy classes of paths from e to y. Note that Zrπ1pGqs is a local system

of (free rank one, left) Zrπ1pGq, es-modules. If G̃
π

ÝÑ Gan is a fixed universal cover, then it is easy to see
that π!Z – Zrπ1pGqs. For example, consider the usual path space PGan Ñ Gan ˆ Gan and the pullback
PGan

e of this path space along the inclusion G ˆ e ÞÑ G ˆ G. This construction gives an explicit model
π : PGan

e Ñ Gan for the universal cover, and one can check that π!Z – Zrπ1pGqs.

2.1.2. (Multiplication by m) Let rms : G Ñ G denote the isogeny induced by multiplication by m. Thepara:prosystem
corresponding subgroup π1pG, eqm Ă π1pG, eq gives rise to the local systems

Vm,n :“ Z{nZrπ1pG, eq{π1pG, eqms.

Note that this is also given by rms˚pZ{nZq. These local systems form a natural prosystem, and the

inverse limit (over m,n) will be denoted by pZrrπ1pGqss. Taking the limit over pℓk, ℓkq (for a fixed
prime ℓ) gives rise to a local system denoted by Zℓrrπ1pGqss. It is a local system of Zℓrrπ1pG, eqss :“

lim
ÐÝ

Z{ℓkZrπ1pG, eq{π1pG, eqℓ
k

s-modules. Note that this ring is naturally a power series in dimpGq-
variables. If we choose generators xi for π1pG, eq, then it is a power series ring in the variables xi ´ 1.

2.1.3. (Etale local systems) One has an etale analog of the constructions of the previous paragraphs.para:etalelocsystem
Consider the (geometric) etale fundamental group πet

1 pGk̄, eq. The multiplication by m map is defined
over k, and one obtains etale local systems V et

m,n exactly as above over k̄. Note that the base change
of these etale local systems to C identify with the local systems Vm,n on GpCq (as a consequence of
Grothendeick’s comparison theorem for the etale fundamental groups). For future reference, we note
that πet

1 pGk̄, eq has a canonical Γk :“ Galpk̄{kq-action.

2.1.4. (The local system in families) The constructions of the previous paragraphs can be performed inpara:locinfamilies
families as follows. In particular, let π : G Ñ S be a semi-abelian scheme (over the complex numbers),
and e : S Ñ G denote the identity section. In this case, the exponential map gives rise to an exact
sequence:

1 Ñ K Ñ e˚T pG{Sq
h

ÝÑ G Ñ 1

where T pG{Sq is the relative tangent bundle. This is an exact sequence of group schemes over S. By
abuse of notation, we denote by K the corresponding sheaf of sections. Then the stalk Ks at s P S is
given by π1pGs, epsqq. Let R :“ ZrKs. Then R is a sheaf of rings on S such that Rs “ Zrπ1pGs, epsqqs.
Setting L :“ h!Z gives a local system on G. Moreover, it is a sheaf of π´1pRq-modules. By construction,
L|Gs

“ Zrπ1pGsqs as a local system on Gs. We may also define a families version, denoted by Lm,n, of the
local systems Vm,n of the previous paragraph. And similarly, a families version Let

m,n of V et
m,n. We leave

the details to the reader.

2.1.5. (The Betti realization) Given a morphism f : X Ñ G, we set

HkpX, f˚Zrπ1pGqsq :“ HkpXan, f˚Zrπ1pGqsq “ HipRΓpXan, f˚Zrπ1pGqsqq,
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where f˚Zrπ1pGqs is the pull back local system. More generally, for Y Ă X is a closed sub-variety,
j : U :“ XzY ãÑ X the corresponding open immersion, and a morphism f : XzY Ñ G, we set

HkpX,Y ; f˚Zrπ1pGqsq :“ HkpXan, Y an; j!f
˚Zrπ1pGqsq.

We record some standard properties of these cohomology groups in the following remark for future
reference.

thm:Betti_properties Remark 2.1.6. With pX,Y, fq and G as above:

(1) The HipX,Y ; f˚Zrπ1pGqsq are finitely generated Zrπ1pG, eqs-modules.
(2) Given a morphism of tuples F : pX 1, Y 1q Ñ pX,Y q over G (i.e. F : X 1 Ñ X is a morphism over

G where F pY 1q Ă Y ), one has a natural pull back morphism of Zrπ1pG, eqs-modules:

F˚ : HipX,Y ; f˚Zrπ1pGqsq Ñ HipX 1, Y 1; f˚Zrπ1pGqsq.

(3) Given a closed subvariety Z Ă Y , one has a natural long exact sequence of Zrπ1pG, eqs-modules

¨ ¨ ¨ Ñ HipX,Z; f˚Zrπ1pGqsq Ñ HipX,Y ; f˚Zrπ1pGqsq

Ñ HipY,Z; f˚Zrπ1pGqsq Ñ Hi`1pX,Y ; f˚Zrπ1pGqsq Ñ ¨ ¨ ¨

2.1.7. (The etale realization) Consider now a triple pX,Y, fq where X is a scheme of finite type over k,para:etalerealizatin
Y Ă X a closed subscheme, and f : XzY Ñ G a morphism of schemes over k. Let j : XzY ãÑ X denote
the natural inclusion, and jk̄ its base change. In this setting, we can consider the etale cohomology
groups:

Hi
etpXk̄, Yk̄; f

˚

k̄
V et
m,nq :“ Hi

etpXk̄, jk̄,!f
˚

k̄
pV et

m,nqq.

We have the following standard properties of these etale cohomology groups:

(1) The cohomology groups Hi
etpXk̄, Yk̄; f

˚

k̄
V et
m,nq are finite Z{nZrπet

1 pGk̄, eq{pπet
1 pGk̄, eqqms-modules.

Moreover, since the local system V et
m,n are defined over k, these cohomology groups have a natural

Γk-action which is semi-linear over the Γk-action on Z{nZrπet
1 pGk̄, eq{pπet

1 pGk̄, eqqms.

(2) Let Zℓrrπ
et
1 pGk̄, eqss :“ lim

ÐÝ
Z{ℓkZrπet

1 pGk̄, eq{pπet
1 pGk̄, eqℓ

k

s. Taking inverse limit over over k

of Hi
etpXk̄, Yk̄; f

˚

k̄
V et
ℓk,ℓkq , we obtain a finitely generated Zℓrrπ

et
1 pGk̄, eqss-module denoted by

Hi
etpXk̄, Yk̄; f

˚

k̄
pZℓrrπ

et
1 pGqssqq. As above, one has an induced (continuous) Γk-action which is

semi-linear over the Γk-action on Zℓrrπ
et
1 pGk̄, eqss. Note that this construction is functorial in

morphisms of triples.

rem:exactinverselimits Remark 2.1.8. Recall that the inverse limit functor is exact on prosystems of modules where each
underlying module is a finite set. In our setting, the usual long exact sequences in etale cohomology
gives rise to long exact sequences of pro-systems. These remain exact after passing to inverse limits. In
particular, various standard long exact sequences in etale cohomology give rise to analogous long exact
sequences of Zℓrrπ

et
1 pGk̄, eqss-modules in the setting above.

Base changing to C, gives a natural map of pro-systems:

HipX,Y ; f˚pVm,nqq Ñ Hi
etpXk̄, Yk̄; f

˚

k̄
V et
m,nq.

Moreover, by Artin’s comparison theorem, this is an isomorphism of prosystems. In the following, we
will identify Zℓrrπ1pG, eqss with Zℓrrπ

et
1 pGk̄, eqss using Grothendieck’s comparison theorem. For future

reference, we summarize the discussion above in the following proposition.

prop:artincomp Proposition 2.1.9. Let pX,Y, f, iq be as above.

(1) There is a natural isomorphism of Zℓrrπ1pG, eqss-modules:

compB,et : H
ipX,Y f˚pZrπ1pGqsqq bZrπ1pG,eqs Zℓrrπ1pG, eqss Ñ Hi

etpXk̄, Yk̄; f
˚

k̄
pZℓrrπ

et
1 pGqssqq.

(2) There is a natural continuous Zℓrrπ
et
1 pGk̄, eqss-semi-linear Γk action on the etale cohomology

groups Hi
etpXk̄, Yk̄; f

˚

k̄
ppZrrπet

1 pGqssqq.
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subsec:etbcomparision
2.2. Comparison of etale and betti monodromy. Let C be a smooth curve over a field k. We shall
assume given fixed embeddings k ãÑ k̄ ãÑ C. Let c P Cpkq, and F denote a local system of Z{nZ-modules
on C.

Let B denote the completion of the local ring OC,c at its maximal ideal. This is a complete dvr with
residue field k, and fraction field denoted by K. The local system F gives rise to a local monodromy
representation:

ρet : GalpK̄{Kq Ñ AutpFK̄q.

On the other hand, we may consider the corresponding local system Fan on Can. We fix a small disk ∆
centered at c, and consider the corresponding representation

ρ : π1p∆˚, sq Ñ AutpFan
t q

where s P ∆˚ is a fixed base point, and t P ∆˚ some generic point. Choosing the standard positive
generator allows us to identify Z “ π1p∆˚, sq.

Following (
SGA7-V2
[2], Expose XIV), we may identify the restriction of ρet to the geometric etale fundamental

group with the corresponding representation ρ. In fact, in loc. cit. a more general result comparing
vanishing cycles (defined in the etale and complex analytic settings) is proved. We recall here only the
statement needed in the following.

More precisely, suppose k “ C. In this setting, the inertia group I “ GalpK̄{Kq “ pZp1q. We may

(canonically) identify the latter with pZ, and one has the resulting inclusion Z ãÑ Z “ pZp1q. With this
notation, one has an isomorphism FK̄ – Fan

t (functorial in F) such that the resulting representations
ρet and ρ are isomorphic when restricted to Z. In the following, we shall apply this to the local systems
Let
m,n and Lm,n defined above (or rather their higher direct images to the base curve C).

3. Proof of Theorem 1.1.1
sec:thm1

In this section, we give a proof of Theorem 1.1.1. In the first sub-section, we prove the key Theorem
1.2.1. In the second sub-section, we give a galois theoretic weight argument. Finally, the last sub-section
completes the proof of Theorem 1.1.1.

subsec:algebraic
3.1. Proof of Theorem 1.2.1. We begin by recalling the statement of the theorem. Let K denote an
algebraically closed field of characteristic 0 and A “ Krt˘1

1 , t˘1
2 , ..., t˘1

n s denote the corresponding Laurent
polynomial ring. A monomial in A is an element of the form ta1

1 ta2
2 ¨ ¨ ¨ tan

n for some pa1, ..., anq P Zn.

Finally, let E :“ Kpt1, . . . , tnq denote the fraction field of A, and E denote a fixed algebraic closure of E.

thm:interproots Theorem 3.1.1. Let P px; t1, t2, ..., tnq P Arxs be a monic polynomial and let P “ px ´ ξ1q ¨ ¨ ¨ px ´ ξdq be
its factorization in E. The following assumptions on P are equivalent:

(I) If b, c1, c2, . . . , cn P K are such that P pb; c1, c2, . . . , cnq “ 0 and c1, . . . , cn are all roots of unity,
then b is also a root of unity.

(II) There is a natural number r such that ξr1 , ξ
r
2 , . . . , ξ

r
d are all monomials of A.

We begin with an intermediate lemma.

lem:IandI’ Lemma 3.1.2. With notation as in Theorem 3.1.1, suppose that (I) holds. Then there is a natural num-
ber r such that the following statement holds:

(I’): If b, c1, c2, . . . , cn P K are such that P pb; c1, c2, . . . , cnq “ 0 and c1, . . . , cn are all m-th roots of unity,
then br is also an m-th root of unity.
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Proof. The required r will be expressed as the product of the terms r1pdq and epF q defined below.
We define r1pdq as follows. Let φ denote Euler’s totient function. In particular, given a prime p,
φppkq “ pk´1pp´ 1q. For every prime p, let kppq :“ maxtk ě 0 : φppkq ď du. For p ą p1` dq, we see that
kppq “ 0. We define r1pdq to be the product (over all primes p) of all the pkppq.

Claim 1: Let M,M 1 ě 1 be positive integers. If M divides M 1 and φpM 1q{φpMq ď d, then M 1 divides
r1pdqM .
Proof: The claim follows by noting that φpM 1{Mq ď φpM 1q{φpMq, and then expressing M 1{M as a

product of prime powers. If M 1{M “
ś

pki
i with pi distinct primes, then

ś

φppki
i q “ φpM 1{Mq ď d. It

follows that φppki
i q ď d, and therefore kppiq ě ki. In particular, pki

i |r1pdq.

Next, let F Ă K be the subfield generated by all the coefficients of P . Let F̄ be the algebraic closure of

F in K. Let χ : GalpF̄ {F q Ñ pZˆ denote the cyclotomic character. Since F is a finitely generated field

extension of Q, the image of χ is an open subgroup U Ă pZˆ. We define e “ epF q to be the smallest

natural number for which U contains kerppZˆ Ñ pZ{eZqˆq. Let Fk be the cyclotomic extension of F
obtained by adjoining all the k-th roots of unity. The very definition of epF q implies

{thm:eq1}{thm:eq1} (3.1.2.1) rFM 1 : FM s “ φpM 1q{φpMq whenever epF q|M |M 1.

As a consequence we have:

Claim 2: If m | m1 and rFm1 : Fms ď d, then m1

m | r1pdqepF q.
Proof: Let M “ l.c.mpm, epF qq and M 1 “ l.c.m.pm1, epF qq. Since FM 1 “ Fm1FM , we have

rFM 1 : FM s ď rFm1 : Fms ď d.

By 3.1.2.1, we get the inequality φpM 1q{φpMq ď d. By Claim 1, we see that M 1{M divides r1pdq. Now,
it is clear that m1{m divides pM 1{MqepF q. It follows that m1{m divides r1pdqepF q, as desired.

We will now show that (I) implies (I’). Let P pb; c1, . . . , cnq “ 0 where ci P K are primitive mi-th roots of
unity for i “ 1, 2, . . . , n. Note that it suffices to prove (I’) when m “ l.c.m.pm1, . . . ,mnq. To prove (I’),
it has to be shown that bmr “ 1 where r “ r1pdqepF q. Now b is a root of the monic degree d polynomial
P px; c1, ..., cnq P F pc1, c2, . . . , cnqrxs. It follows that

rF pb, c1, c2, . . . , cnq : F pc1, c2, . . . , cnqs ď d.

Clearly Fm equals F pc1, . . . , cnq. If m1 denotes the number of roots of unity in F pb, c1, . . . , cnq, then this
field is Fm1 . Thus rFm1 : Fms ď d. Claim 2 shows m1{m divides r. The m1-th power of b is 1. It follows
that bmr “ 1. This completes the proof of (I) implies (I’).

□

Proof. (Theorem 3.1.1)
We first show that (I’) implies (II). Consider Pr :“ px´ ξr1qpx´ ξr2q ¨ ¨ ¨ px´ ξrdq P Erxs. Considerations of
the universal degree d polynomial show:

(i) Pr P Arxs

(ii) if px ´ b1q ¨ ¨ ¨ px ´ bdq is the factorization of P px; c1, c2, . . . , cnq P Krxs for c1, . . . , cn P Kˆ, then
px ´ br1q ¨ ¨ ¨ px ´ brdq is the factorization of Prpx; c1, . . . , cnq. In particular, if Prpb; c1, . . . , cnq “ 0,
then there exists b1 P K such that P pb1; c1, . . . , cnq “ 0 and b “ pb1qr.

(iii) Under the assumption of (I’), we deduce:
If c1, ..., cn P Kˆ are m-th roots of unity, and if Prpb; c1, . . . , cnq “ 0, then b is also an m-th root
of unity.
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Before proceeding further, we introduce some terminology to facilitate the reduction from n variables to
one variable. For a natural number h, let

Sphq :“ tta1
1 ¨ ¨ ¨ tan

n : |ai| ď h,@1 ď i ď pn ´ 1qu.

Let V phq denote the K-linear span of Sphq in A.

In the following, q will be a ‘large’ odd natural number (to be specified later). Consider the K-algebra ho-
momorphism j : A Ñ A1 :“ Krt˘1s given by setting jpt1q “ t, and jptiq “ jpti´1qq for all 2 ď i ď n. Ev-
ery integer can be expressed uniquely as a1`a2q`...`an´1q

n´1`anq
n with |ai| ď

q´1
2 for i “ 1, 2, ..., n´1.

This justifies statement (iv) below.

(iv) The ring homomorphism j : A Ñ A1 restricts to a bijection from Sp
q´1
2 q to tta|a P Zu. Conse-

quently, j also restricts to an isomorphism of vector spaces from V p
q´1
2 q to A1.

We have s1, s2, . . . , sd P A such that Pr “ xd ´ s1x
d´1 ` ¨ ¨ ¨ ` p´1qdsd. Choose the least k1 and k2 such

that s1 P V pk1q and si P V pk2q for all 2 ď i ď d. Let q “ 1 ` 2maxpk2, k1dq.

(v) If there are integers a1, . . . , ad such that jpPrq “ px ´ ta1q ¨ ¨ ¨ px ´ tadq then there are monomials
g1, . . . , gd P A such that the product Q “ px ´ g1q ¨ ¨ ¨ px ´ gdq is equal to Pr.
Proof of (v). By (iv), we obtain gi P Sp

q´1
2 q such that jpgiq “ tai for 1 ď i ď d. We now have

jpPrq “ jpQq where

Q “ px ´ g1qpx ´ g2q...px ´ gdq “ xd ´ s1
1x

d´1 ` s1
2x

d´2 ` ... ` p´1qds1
d

In particular, jps1q “ jps1
1q. This implies s1 “ s1

1 by the second assertion of (iv), once it has been
noted that
(a) s1 P V p

q´1
2 q because k1 ď

q´1
2 , and

(b) s1
1 P V p

q´1
2 q, because s1

1 is the sum of the gi which lie in the same vector space.
Because V pk1q is spanned by monomials, and because s1 P V pk1q is itsef the sum of monomi-
als gi, it follows that all the gi belong to V pk1q. We see that s1

i P V pik1q Ă V pdk1q. Now

s1, . . . , sd, s
1
1, . . . , s

1
d belong to V pdk1q ` V pk2q, which by our choice of q, is contained in V p

q´1
2 q.

By assumption jpsiq “ jps1
iq, and by (iv) we conclude that si “ s1

i for all 1 ď i ď d. This proves
that Pr “ Q.

We retain the F and epdq introduced in the proof of Lemma 3.1.2 above. Since P P F rt˘1
1 , . . . t˘1

n srxs, it
follows that Pr also belongs to the same ring. In particular, H :“ jpPrq belongs to F rt˘1srxs. It remains
to verify the hypothesis of (v) above for H.

By definition, Hpx; cq “ Prpx; c, cq, cq
2

, . . .q and by (iii), if c is a primitive m-th root of unity and
Hpb; cq “ 0, then b is also an m-th root of unity. It follows that Hpx; cq “ px ´ ca1q ¨ ¨ ¨ px ´ cadq with
|ai| ď m

2 for all i “ 1, 2, . . . , d. Let H 1px; tq :“ px ´ ta1q ¨ ¨ ¨ px ´ tadq. We can write

(3.1.2.2) Hpx; tq “ Σd
i“0p´1qiuiptqx

d´i and H 1px; tq “ Σd
i“0p´1qiu1

iptqx
d´i

We will now take m “ p to be a prime number ą epF q. This ensures that the minimal polynomial of c
over F is Φpptq “ 1` t` ...` tp´1. Because Hpx, tq ´H 1px, tq vanishes when t “ c and t “ 1, we see that
uiptq ´ u1

iptq is divisible by lcmpΦpptq, t ´ 1q “ tp ´ 1.

Let W pkq denote the F -linear span of ta with |a| ď k, and choose li ě 0 so that uiptq P W pliq for
i “ 1, 2, ..., d. Let p´1

2 ě maxtdl1, l2, l3, ..., ldu for all i “ 1, 2, ..., d. To proceed, we observe

(a) W p
p´1
2 q X ptp ´ 1qF rt˘1s is zero
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(b) uiptq P W p
p´1
2 q for all i “ 1, 2, . . . , d

(c) u1
1ptq P W p

p´1
2 q

Taking i “ 1 in (b), we employ (a) and (c) to deduce that u1ptq “ u1
1ptq. This implies that u1

iptq belongs

to W pil1q (for all i), which is contained in W p
p´1
2 q by our choice of p. Now (a) and (b) imply that

uiptq “ u1
iptq for all i. This completes the proof of (I’) implies (II).

Finally, note that the implication II implies I is standard: it follows, for instance, from property (ii) of
Pr in the proof of I 1 implies II .

□

We believe that a stronger statement should be true. With K and A as before, let P P Arxs be a monic
polynomial. For every natural number m, consider the hypothesis Hpmq below:

Hpmq: If c1, c2, ..., cn P K are m-th roots of unity and if P pb; c1, ..., cnq “ 0, then b is a root of unity.

Let F pP q be the field generated by the coefficients of P , XpP q be the finite set of monomials that appear
in P , and let dpP q “ degpP q.

Conjecture 3.1.3. There is a constant Cpd, F,Xq defined for all natural numbers d, all finite subsets X
of the set of monomials of A, and for all finitely generated subfields F of K with the following property:
If there exists a natural number m ą CpdpP q, F pP q, XpP qq for which Hpmq is valid, then some power of
every root of P is a monomial in A.

Our proof of the theorem proves the following weaker statement:

If there is a prime p ą CpdpP q, F pP q, XpP qq for which Hppq is valid, then the same conclusion holds.

In reality, the proof uses the set of monomials XpPrq rather than XpP q itself. But the former gives an
upper bound of the latter, so we obtain such a constant Cpd, P,Xq.

subsec:weightargument
3.2. The Galois theoretic weight argument. Let B denote a complete discrete valuation ring, k its
residue field, and K its fraction field. Let Ks denote a fixed separable closure of K, and Γ :“ GalpKs{Kq.
If C is the integral closure of B in Ks, then the residue field k̄ of C is an algebraic closure of k, and we
denote by Γ1 “ Autkpk̄q the group of k-automorphisms of the residue field. In this setting, we have the
usual short exact sequence

1 Ñ I Ñ Γ
s

ÝÑ Γ1 Ñ 1

where I :“ kerpsq is the inertia subgroup, and s is the natural quotient map.

Let ℓ ‰ charpkq be a fixed prime, and χℓ : Γ
1 Ñ Zˆ

ℓ denote the cyclotomic character. On the other hand,
usual Kummer theory gives rise to the standard Γ1-equivariant surjection:

c : I Ñ Zℓp1q.

In particular, one has the following relation:

{eqn:inertia-v-cyclotomic}{eqn:inertia-v-cyclotomic} (3.2.0.1) cpghg´1q “ cphqχℓpspgqq @g P G, h P I.

The following hypothesis will be assumed for the rest of the section:

The image of χℓ is open.

For example, this is true if k is finitely generated over its prime field.

Let pA,mAq be a complete local ring with residue characteristic ℓ, AutpAq the group of ring automor-
phisms, and σ : Γ1 Ñ AutpAq a continuous group homomorphism. Note that AutpAq “ lim

ÐÝ
AutpA{mn

AAq

and therefore has the natural inverse limit topology. In the following, we shall assume that the residue
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field of A is finite. Given a finitely generated A-module M , let AutinvpMq :“ lim
ÐÝ

AutpM{mn
AMq,

where AutpM{mn
AMq denotes the group of automorphisms of M{mn

AM as an abelian group. Note that
AutinvpMq also comes equipped with the natural inverse limit topology.

defn:compatibleaction Definition 3.2.1. A σ-compatible pair pM,ρq is a finitely generated A-module M equipped with a
continuous group homomorphism ρ : Γ Ñ AutinvpMq such that the following relation holds:

{eqn:semi-linearity}{eqn:semi-linearity} (3.2.1.1) ρpgqav “ pσpspgqqaqρpgqv @g P Γ, a P A, and v P M.

Remark 3.2.2. Since I :“ kerpsq, it follows that ρphq is an A-module automorphism of M for all h P I.

In particular, we have an induced homomorphism ρ|I : I Ñ AutApMq, where AutApMq is the group of
A-module automorphisms of M . Note that AutApMq “ lim

ÐÝ
AutApM{mn

AMq has the natural inverse limit
topology, and ρ|I is continuous with this topology (the subspace topology on AutApMq ãÑ AutinvpMq is
the aforementioned inverse limit topology). Since the residue field of A is finite, it follows that the kernel
of the natural surjection

AutApMq Ñ AutApM{mAq

is a pro-ℓ-group. In particular, after passing to a finite separable extension K 1 of K, and replacing B by
the integral closure of B in K 1, we may assume that the image of ρ|I in AutApM{mAq is trivial. On the
other hand, no subquotient of the kernel of c : I Ñ Zℓp1q has non-trivial ℓ-torsion. It follows that ρ|I

factors factors through c i.e. there exists

ρ̄ : Zℓp1q Ñ AutApMq

such that ρ̄ ˝ c “ ρ|I .

In the following, we assume that the σ-compatible pair pM,ρq satisfies the hypotheses above, and in
particular a ρ̄ is fixed for such a pair.

lem:G’equivariant Lemma 3.2.3. Let pM,ρq be a σ-compatible pair as above. In particular, we assume that ρ|I factors via
ρ̄ as above. Let v P M such that ρpIqpAvq Ă Av, and Pv :“ Annpvq Ă A denote its annihilator.

(1) For g P Γ1, set Pgv :“ Annpρpg1qvq for some lift g1 P Γ of g. Then Pgv is independent of the
chosen lift.

(2) Let g P Γ1. Then σpgqPv “ Pgv. One has an induced homomorphism

g ¨ r´s : pA{Pvqˆ Ñ pA{Pgvqˆ

given by sending the class ras of a P A to g ¨ ras :“ rσpgqas. This construction is compatible with
the group structure of Γ1. In particular, pg1 ¨ r´sq ˝ pg ¨ r´sq “ g1g ¨ r´s.

(3) Let θv : Zℓp1q Ñ pA{Pvqˆ be defined as follows. For h P Zℓp1q, ρ̄phqv “ av for some a P A. Let
θvphq :“ ras where ras is the class of a in A{Pv. Then θv is a well-defined homomorphism.

(4) Let g P Γ1. Then ρpIqpApρpgqvqq Ă Apρpgqvq. Moreover, the following diagram commutes:

Zℓp1q

g

��

θv // pA{Pvqˆ

g¨r´s

��

Zℓp1q
θgv
// pA{Pgvqˆ

Here the Γ1 action on the left is via the cyclotomic character.

Proof. (1) Let g2 be another lift. We claim that Annpρpg1qvq “ Annpρpg2qvq. Let a P A such
that aρpgiqv “ 0. By σ-compatibility, this is true iff σpspg´1

i qqpaqv “ 0. On the other hand,

σpspg´1
1 qq “ σpspg´1

2 qq.
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(2) The first part results from a direct computation using the definition of σ-compatibility. If g P Γ1

and a P Pv, then σpgqpaqpρpgqpvqq “ ρpgqpavq. It follows that σpgqPv Ă Pgv. A similar argument
gives the reverse inequality. The compatibility with group structure follows easily from the
definition.

(3) In order to see that θv is well defined, suppose ρ̄phqv “ a1v for some other a1 P A. Then a1´a P Pv.
It follows that θvphq “ ras is well-defined. Note that ras P pA{Pvqˆ. If ρ̄ph´1qv “ ãv, then

v “ ρ̄phqpρ̄ph´1qvqq “ ρ̄phqpãvq “ aãv.

Here the last equality follows since ρ̄ is A-linear. It follows that aã ´ 1 P Pv, and therefore
ras P pA{Pvqˆ. We leave it to the reader to show that θv is a group homomorphism.

(4) Let k P I, and a P A. Then k1 “ g´1kg P I, and we have ρpk1qpvq “ av for some a P A. It
follows that ρpkqpρpgqvq “ σpgqpaqpρpgqpvqq. Therefore, ρpIqpρpgqvq Ă Apρpgqvq. This proves the
first assertion. Now let h P Zℓp1q and g P Γ1. Then g ¨ θvphq “ rσpgqas where θvphq “ ras. On
the other hand, θgvpg ¨ hq “ rbs where ρ̄pg ¨ hqpρpgqvq “ bpρpgqvq. Here g ¨ h denotes the action

by the cyclotomic character. Let h̃ P I be a lift of h. Then, by 3.2.0.1, we have ρ̄pg ¨ hqpgvq “

ρpgh̃g´1qpρpgqvq “ ρpgqpavq “ σpgqpaqpρpgqvq. It follows that rbs “ rσpgqpaqs.
□

subsec:completeproofthm1

3.3. Completion of Proof of Theorem 1.1.1. Recall, we are in the setting of Theorem 1.1.1. In
particular, we are given a tuple pX,Y, f,Gq and a curve C, all over C, such that:

(1) Let G :“ G ˆ C, and π : G Ñ C denote the projection map
(2) f : X Ñ Czc0 is a proper map
(3) F : XzY Ñ G|Czc0 is a morphism over Czc0

We assume that there is an exact sequence

1 Ñ T Ñ G Ñ A Ñ 1

where T “ Gr
m is an r-dimensional torus, and A is an abelian variety.

Remark 3.3.1. We fix a finitely generated subfield k Ă k̄ Ă C (where K̄ is a fixed algebraic closure), so
that our data above is defined over K. In particular, pX,Y, f,Gq, F , C are defined over K and c0 P CpKq.
Below, we shall add a subscript k or k̄ to denote the corresponding object. For example, Xk is the variety
over k, and X is its base change to C etc.

We now restrict to a small disk ∆ centered at c0, and consider the constant local system R “ Zrπ1pG, eqs

on ∆, and the corresponding local system L of π˚pRq-modules on G. Recall, Lt is identified with the local
system Zrπ1pGqs for t P ∆. We now consider Rif˚pj!F

˚Lq. First, note that on a small enough punctured
disk ∆ˆ this is a local system of R :“ Zrπ1pG, eqs-modules. Moreover, as a consequence of proper base
change, its stalk at a point t is HipXt, jt,!F

˚
t Ltq “ HipXt, Yt;F

˚
t pZrπ1pGqsq. Here jt : XtzYt ãÑ Xt is

the natural inclusion. Hence, we have a local system of R-modules, and the corresponding monodromy
representation. Suppose now that the cohomology groups above vanish for all j ‰ i, and is a free
R-module in degree i. We would like to show that the eigenvalues of monodromy are monomials. In
particular, we have the monodromy representation

ρ : π1p∆ˆ, sq Ñ GLRpHipXan
t , Y an

t , F˚
t Zrπ1pGqsqq.

Let P pxq “ px ´ ξ1q ¨ ¨ ¨ px ´ ξdq be a factorization of the characteristic polynomial of the canonical
generator σ P π1p∆ˆ, sq as in Theorem 1.1.1. We wish to show that there is an r such that ξri P π1pT, eq

for all i.

(1) We first show that there is a natural number r such that ξrj is a monomial for all 1 ď j ď d
i.e. ξrj P π1pGq. We only need to verify that P pxq verifies hypothesis (1) of Theorem 3.1.1.
We will see that this follows from an application of the classical local monodromy theorem.
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Consider the etale covering rms : G Ñ G given by multiplication by m, and let Gm denote the
kernel. As before, let pXzY qm Ñ XzY denote the corresponding etale covering (given by base-
change along f) with Galois group Gm, and denote the normalization of the above covering by
Xm Ñ X. Note that pXzY qm “ XmzYm where Ym : Xm ˆX Y . Let Rm denote the group-ring
of Gm, and jm : XmzYm ãÑ Xm denote the inclusion. The sheaf Rm bR j!F

˚L is identified
with the push-forward to X of pjmq!Z. This identifies Rm bR HipXt, j!F

˚
t Ltq with the i-th

cohomology of the inverse image of t of the pair pXm, Ymq i.e. HipXm,t, Ym,t;Zq. In order to
see this, note that Rm bL RΓpXt, j!F

˚
t Ltq – RΓpXt, Rm b jt,!F

˚
t Ltq. On the other hand, by our

assumption of freeness and only one non-vanishing cohomology group, Rm bL RΓpXt, j!F
˚
t Ltq “

Rm bR HipXt, j!F
˚
t Ltq.

3 The classical monodromy theorem applies here; in particular, if we
denote by Pmpxq P Crxs the characteristic polynomial of monodromy action on HipXm,t, Ym,t;Zq,
then the roots of Pmpxq are roots of unity. Let P̄ P Rmrxs be the image of PT P Rrxs. The
tensor product C b Rm is the product of copies of C indexed by the pc1, . . . , cnq where cmi “ 1
for all i. Therefore, under this identification, the image of Pmpxq (in Crxs) is the product of
PT px; c1, . . . , cnq over all pc1, . . . , cnq where cmi “ 1 for all i. On the other hand, by the discussion
above, this product of polynomials is precisely Pmpxq. As we have seen, the latter has roots given
by roots of unity. We conclude that P pxq P Rrxs satisfies hypothesis (1) of Theorem 3.1.1.

(2) In order to deduce that the monomial must lie in π1pT, eq, we shall apply the comparison with etale
cohomology (as in 2.2) and use a weight argument. Specifically, let Mb :“ HipXt, Yt; f

˚
t Zrπ1pGqsq,

R “ Zrπ1pG, eqs, and J Ă R denote the augmentation ideal. Let B denote the completion of
OCk,c at its maximal ideal. By choosing a local parameter t (at c), we may identify B “ krrtss
with fraction field K “ kpptqq. Let K̄ be a fixed algebraic closure of K with residue field k̄.
Consider now the etale cohomology group Met,ℓ :“ lim

ÐÝ
Hi

etpXK̄ , YK̄ ; f˚

K̄
V et
ℓk,ℓkq with V et

ℓk,ℓk as in

2.1.3. Recall, Met,ℓ is naturally a Zℓrrπ
et
1 pGK̄ , eqss-module with a action of Γ “ GalpK̄{Kq semi-

linear action (see 2.1.7). Since etale fundamental groups are invariant under algebraically closed
field extensions, we may identify this with Zℓrrπ

et
1 pGK̄ , eqss “ Zℓrrπ

et
1 pGC, eqss “: A. Note that A

is the ℓR ` J-adic completion of R, and set M “ Mb bR A. We consider Met,ℓ as an A-module
(as before via Grothendieck’s comparison theorem for the etale fundamental group) and following
the discussion in section 2.2, we have a natural isomorphism M – Met,ℓ of A-modules compatible
with the monodromy action. More precisely, the monodromy induces a natural Z-action on M .

On the other hand, one has an action of inertia I “ pZp1q on Met,ℓ, and the two actions are

compatible under the canonical inclusion Z ãÑ pZ – pZp1q.
(3) Recal that A has a natural (continuous) Γ-action, which factors through Γ1 “ Galpk̄{kq (with

notation as in section 3.2). We now view M as an A-module with a Γ-semi-linear action as in
Definition 3.2.1.

(4) We now work with M , A, B, and Γ as above. We assume that our data satisfy the hypotheses of
section 3.2. In particular, the action of inertia factors through Zℓp1q (recall, we can always achieve
this upto replacing K by a finite extension). Our loop is the element 1 P Z, and we consider it
as an element γ P Zℓp1q by the discussion above. We are concerned with the eigenvalues of ρpγq

(in the notation of 3.2).
(5) Let AJ denote the localization of A at JA, and A1 denote the completion of AJ at its maximal

ideal JA. Then one has a canonical isomorphism ι : A1 Ñ zSymQℓ
pQℓ b π1pG, eqq where the right

side is the completion of the symmetric alebra. Here ι´1pexpphqq “ h for all h P Zℓ b π1pG, eqq Ă

Aˆ. Note that Zℓ b π1pG, eqq has the natural Γ1-action (identifying it with the corresponding
Tate module). On the other hand A, and therefore Aˆ has the natural Γ1-action; the inclusion
Zℓ b π1pG, eqq Ă Aˆ is Γ1-equivariant.

3Alternatively, we could instead assume all cohomology groups are free modules in order to obtain the same conclusion.
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(6) Consider an eigenvalue λ of γ, and v P MB the corresponding eigenvector. We use the same
notation v to denote 1 b v P M . After passing to a finite extension, we may assume that
λ P π1pG, eq i.e. that it is a monomial. We would like to show that λ P π1pT, eq. This data
gives rise to a morphism θ : Zℓp1q Ñ Aˆ with notation as in Lemma 3.2.3. Note that in the
current setting M is a free A-module, and A is a domain. In particular, Pv “ Pgv “ 0. One has
θpγq “ λ and therefore θpγmq “ λm for all m P Z. By continuity, we see that this holds for all
m P Zℓ. Now ι ˝ θpγq “ λ P Qℓ b π1pG, eq. On the other hand, Γ1 ‘equivariance’ (i.e. the last
part of Lemma 3.2.3) now shows that the action on λ must be via the cyclotomic character, and
therefore λ P π1pT, eq. (The point being that the monomials coming from the Tate module of the
abelian variety have different weight).

4. Parametrized Basic Lemma
sec:parambasiclem

In this section, we prove Theorems 4.5.3 and 4.5.4. These statements are applications of Proposition
4.4.1 below, which is a parametrized version of Beilinson’s lemma (

Bei-Basiclem
[3]). More precisely, we prove below a

parametrized version of the Basic Lemma (second form) in (
N1
[5], page 475). The last sub-section applies

these results to prove Theorem 1.1.5.
conventions

4.1. Conventions. A subfield k of C remains fixed throughout, and we work with the category of
separated k-schemes of finite type. Given such a k-scheme X, the set XpCq of its C-rational points,
inherits its classical topology and the sheaf of holomorphic functions. This local ringed space will be
denoted by Xan. We will utilize only the topology of Xan but not the sheaf Oan of holomorphic functions.
The main objects considered below are sheaves of abelian groups on Xan; these will be referred to simply
as “sheaves on X”. Given a morphism of scheme f : X Ñ Y over Specpkq, we will abuse notation further
and write Rqf˚F in place of Rqpfanq˚F .

cbc
4.2. Base Change, Cohomological Base Change, and the sheaf FY .

A : We will often consider pairs pX
f

ÝÑ S,Fq where f is a morphism of k-schemes and F is a
sheaf on X. Given an S-scheme T , we obtain the base-changed pair pXT Ñ T,F |XT

q where
XT “ X ˆS T and F |XT

“ p´1F with p : XT Ñ X denoting the first projection. Denoting by
f : X Ñ S, g : T Ñ S the given morphisms and by fT : XT Ñ T the second projection, we have
a natural base change morphism g´1Rqf˚F Ñ RqpfT q˚F |XT

.
B : We say that the pair pX Ñ S,Fq satisfies cohomological base-change (CBC) if

g´1Rqf˚F Ñ RqpfT q˚F |XT

is an isomorphism for all q ě 0 and for all S-schemes T .
C : If any two of the members of a short exact sequence of sheaves on X satisfy CBC with respect

to a given morphism X Ñ S, it follows from the definition that the third also satisfies CBC with
respect to X Ñ S.

D : Given a closed subscheme Y of X, and a sheaf F on X we define FY by

FY :“ kerpF Ñ i˚F |Y q,

where i : Y ãÑ X is the inclusion morphism.
E : If Y is closed in X and if CBC holds for both pX Ñ S,Fq and pY Ñ S,F |Y q, it follows from

4.2 C above that CBC holds for pX Ñ S,FY q.

F : As a corollary, if CBC holds for pX
f

ÝÑ S,Fq, then CBC holds for pX Ñ S,FN q where
N “ f´1M and M is a closed subscheme of S.

G : If CBC holds for pX
f

ÝÑ S,Fq and also for pS
g

ÝÑ T,Rqf˚Fq for all q ě 0, then CBC holds for

pX
g˝f

ÝÝÑ T,Fq. This assertion is immediate from the Leray spectral sequence.
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H : We remind the reader that CBC holds for pX
f

ÝÑ S,Fq whenever f is a proper morphism; in
particular, when f is a finite morphism.

line
4.3. The affine line.

Lemma 4.3.1. Let π : A1
S Ñ S be the projection and Z be a closed subscheme of A1

S such that Z Ñ S
is a finite surjective morphism. Let F be a sheaf on A1

S such that

(i) the restriction of F to the complement of Z is a locally constant sheaf, and
(ii) F |Z “ 0.

Finally, let M be a closed subscheme of S and let N :“ π´1M . Then the following assertions hold:

I : pA1
S

π
ÝÑ S,Fq satisfies CBC.

II : Rqπ˚F “ 0 for all q ‰ 1.
III : For every s P SpCq, there are xi (1 ď i ď r) in π´1psq and a non-canonical isomorphism

φpsq : pR1π˚Fqs Ñ ‘r
i“1Fxi .

If R is a sheaf of rings on S, and if F is a sheaf of π´1R-modules, then φpsq is an isomorphism
of Rs-modules.

IV : With M and N as above, properties I and II also hold for pA1
S

π
ÝÑ S,FN q; see 4.2 D for the

definition of FN .
V : Assume that Z ∖ Z X N Ñ S ∖M is etale. Then R1π˚F restricts to a locally constant sheaf

on S ∖M .

Proof. Parts I and II are special cases of proposition1.3A and corollary 1.3B of (
N1
[5], page 477). Moreover,

Remark 1.4 of (
N1
[5], page 479) proves part III. The isomorphism φpsq depends on the choice of a tree in

π´1psq with π´1psq X Z as its vertices, and the xi are interior points of its edges. The isomorphism is
obtained from a Mayer-Vietoris sequence, and therefore commutes with all endomorphisms of the given
sheaf. In particular, if F is a sheaf of π´1R-modules, the isomorphism chosen is in fact an isomorphism
of Rs-modules. Part IV follows from 4.2 F. The point is that I and II are valid for the base-changed pair
pN Ñ M,F |N q since this pair satisfies piq and piiq. Finally, Remark 1.5 on page 479 of (

N1
[5]), proves V.

□

4.4. The general case.

prop:basicgeneralcase Proposition 4.4.1. Let S be an irreducible scheme and η its generic point. Let π : X Ñ S be an affine
morphism such that dimXη “ n. Let F be a sheaf on X such that F |U is locally constant for some open
dense U Ă X. Then there is a closed subscheme Y of X with dimYη ă n and a nonempty open T Ă S
for which the following statements are valid for FY :

(A) The base-changed pair pXT Ñ T,FY |XT
q satisfies CBC, with FY as in 4.2 D.

(B) Rqπ˚pFY q|XT
“ 0 for all q ‰ n, and Rnπ˚pFY q|XT

is a locally constant sheaf.
(C) For every s P SpCq, there are x1, x2, ..., xr P π´1psq and an isomorphism

φpsq : Rnπ˚pFY q
–

ÝÑ ‘r
i“1Fx.

If F is a sheaf of π´1R-modules, where R is a sheaf of rings on S, then φpsq can be chosen to
be an isomorphism of Rs-modules.

(D) In particular, if F |U is a locally free sheaf of π´1R-modules of finite rank, then Rnπ˚pFY q is a
locally free sheaf of R-modules of finite rank, when restricted to T .

Proof. The proposition is a statement about affine morphisms π : X Ñ S where the target S is irreducible.

Given a sheaf F on X, we express π : X Ñ S as a composite X
f

ÝÑ Ar
S

p
ÝÑ S. We will assume

the proposition has been proved for p, and that an even stronger form of the proposition is valid for
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f : X Ñ Ar
S . More precisely, we will assume that there is a closed subvariety Y Ă X (dimpYηq ă n) and

a nonempty open T Ă S such that the following hold:

(A’) The base-changed pair pXT Ñ Ar
T ,FY |XT

q satisfies CBC,
(B’) Rqf˚pFY qXT

“ 0 for all q ‰ n ´ r, and Rn´rf˚pFY qXT
is a locally constant sheaf on Ar

T .
(C’) The obvious analogue of part (C) is valid for pXT Ñ Ar

T ,Fq.

The proposition for f : X Ñ Ar
S would require an arbitrary nonempty subset of Ar

S , whereas the above
stronger form allows only open subsets of the type Ar

T .
To continue, in view of (B’), we are in a position to apply the proposition to the sheaf
G :“ Rn´rf˚FY and the morphism p : Ar

S Ñ S and obtain a closed subvariety M Ĺ Ar
S and a nonempty

T 1 Ă S satisfying

(A”) The restriction of G to Ar
T 1 satisfies CBC for pT 1 : Ar

T 1 Ñ T 1

(B”) Rqp˚G|T 1 is zero for q ‰ r, and is locally constant for q “ n ´ r.
(C”) the obvious analogue of part(C) of the proposition holds for Rn´rp˚G.

Let N :“ f´1M and W :“ Y Y N . From (A’) and 4.2 F, we see that CBC holds for the restriction
of the sheaf FW “ pFY qN to XT and the morphism XT Ñ Ar

T . Clearly Rn´rf˚FN “ GM . In view
of (A”,B’,B”) it follows that parts (A) and (B) of the proposition hold for π : X Ñ S with the open
T X T 1 Ă S and the closed W Ă X. That (C’) and (C”) imply (C) is evident.
We will complete the proof of the proposition for X “ An

S in Step 1 below and the general case in Step
2. Both cases are essentially Noether normalization at η.
Step 1. We will prove the proposition for π : An

S Ñ S by induction on n ě 0, the case n “ 0 being
trivial. The sheaf F on An

S is locally constant on the complement of a (reduced) hypersurface V of An
S .

After a linear change of variables, we may assume that the projection f : An
S Ñ An´1

S restricts to a finite

morphism VT Ñ An´1
T for some nonempty open T Ă S. In view of 4.3, we see that FY satisfies the above

(A’,B’,C’) if Y “ f´1D and pV zV XY qT Ñ pAn´1zDqT is etale. Thus the stronger form has been proved
for pAn

S ,Fq and the result follows by induction on n.
Step 2. Noether normalization for Xη yields a morphism f : X Ñ An

S , such that fT : XT Ñ An
T is a finite

morphism. Choose a a closed subvariety D Ĺ An
S such that

(a) pXzf´1DqT Ñ AnzDqT is etale,
(b) the restriction of F to the complement pAnzDqT is locally constant. We see then that Y “ f´1D sat-
isfies the requirements of (A’,B’,C’). Because the proposition has been proved for An

S Ñ S, the proposition
for the sheaf F on X follows. □

wc

4.5. Weakly constructible sheaves.

Definition 4.5.1. A sheaf F on X (in the sense of 4.1) is weakly constructible if there is a finite collection
Z1, Z2, ..., Zr of locally closed subvarieties of X such that

(i) F , when restricted to Zi, is a locally constant sheaf, for every i “ 1, 2, ..., r
(ii) X “ Z1 Y Z2 Y ¨ ¨ ¨ Y Zr.

Remark 4.5.2. (1) Weakly constructible sheaves form an abelian category.
(2) If R is an arbitrary sheaf of rings on X, then weakly constructible sheaves on R-modules on X

also form an abelian category.

appthm Theorem 4.5.3. Let π : X Ñ S be an affine morphism, where S is irreducible with generic point η.
Let n “ dimXη. Let F be a weakly constructible sheaf on X. We consider increasing sequences of
closed subvarieties X0 Ă X1 Ă ... Ă Xn “ X with dimpXiqη ď i for all i “ 0, 1, 2, .... We denote by πi

the composite Xi ãÑ X Ñ S. Such a sequence is admissible if the sheaves Fi :“ FXi´1 |Xi satisfy the
conditions below for some nonempty T Ă S:

(A) The sheaf Fi satisfies CBC for the given morphism pXiqT Ñ T
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(B) Rqpπiq˚Fi is zero for q ‰ i and is locally constant for q “ i, when restricted to T .

We then have:

(I) There exists an admissible increasing sequence.
(II) More generally, given an increasing sequence X 1

i : i “ 0, 1, ..., n that satisfies the dimension
restriction, there is an admissible increasing sequence Xi : i “ 0, 1, ..., n such that X 1

i Ă Xi for
all i “ 0, ..., n

Proof. Part (I) follows from part (II) by taking X 1
i “ H for i ă n For part (II), one constructs the

sequence Xi : 0 ď i ď n by decreasing induction on i. Assume that Xi has been chosen so that X 1
i Ă Xi.

If dimpXiqη ă i, we take Xi´1 “ Xi. We now assume dimpXiqη “ i. Because F is weakly constructible,
it follows that its restriction to Xi is also weakly constructible. Thus F restricts to a locally constant
sheaf on an open dense subset U of Xi. Let Z “ X 1

i´1 Y pXizUq. We apply Proposition 4.4.1 to

pπi : Xi Ñ S,FZ |Xi and obtain a closed subvariety Y Ă Xi such that the sheaf FZYY |Xi satisfies all
parts of the proposition. We define Xi´1 “ Y Y Z. □

appthmm Theorem 4.5.4. With notation and assumptions as in the previous theorem, assume that F is a sheaf of
π´1R-modules, where R is a locally constant sheaf of rings on S. Assume also that the stalk of F at every
point of x P XpCq is a finitely generated free Rπpxq-module. Define a sequence to be strongly admissible

if the extra condition: “Ripπiq˚Fi is a locally constant sheaf of finitely generated free R-modules of finite
rank, when restricted to a nonempty open subset of S” holds.
Then both parts of the above theorem are valid with ‘admissible’ replaced by ‘strongly admissible’.

The proof of theorem 4.5.3 is valid for theorem 4.5.4 as well.

subsec:proofofgeneralthm
4.6. Proof of Theorem 1.1.5. In the setting of Theorem 1.1.5, M :“ HipXt, Yt; f

˚
t Zrπ1pGtqsq is no

longer assumed to be a free R-module (concentrated in one cohomological degree) and our abelian scheme
G is no longer assumed to be split. We now explain how to deduce Theorem 1.1.5 from Theorem 1.1.1
and Theorem 4.5.4.

(1) First, note that the proof of Theorem 1.1.1 is valid in the setting where the semi-abelian scheme
is not necessarily split (still under the assumptions that the relevant cohomology group is free in
degree i and zero in other degrees). The key point is that the local system R is constant in the
small disk, and G Ñ S is a topological fibration, and therefore the cohomology group M has an
R-linear monodromy action.

(2) Suppose now that π : X Ñ S is an affine morphism. By Theorem 4.5.3, our M is a sub-quotient
of an object appearing of the type appearing in 1.1.1. Therefore, by Theorem 1.1.1 (in view of
(1) above), it is annihilated by an element of the type given in 1.1.5.

(3) Note that if X is quasi-projective, then we can immediately conclude from (2) via Jouanalou’s
trick. More precisely, the statement is local around c P S, and therefore we may assume S is
affine. We now use Jounalou’s trick to replace X by an affine scheme over X which is a vector
bundle over X.

(4) In general, first fix a finite affine cover pUiqiPI of X. Then we may consider the Cech spectral
sequence for RF˚ (recall F : X Ñ C is the structure map) for this cover. After restricting to a
small enough punctured disk around c, we may assume that all derived push-forwards appearing
in the spectral sequence are local systems on this punctured disk. One can achieve this since we
have a finite cover, and our complexes are cohomologically bounded. Now one uses the fact that
the objects being dealt with form an abelian category. To be precise, we consider the category
of R-modules with π1p∆ˆ, sq-action such that the eigenvalues of monodromy are roots of Toric
monomials (i.e. monomials that come from the Torus). This is an abelian category.
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