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Abstract. Given a lisse l-adic sheaf G on a smooth proper variety X and a lisse sheaf F on
an open dense U in X, Kato and Saito conjectured a localization formula for the global l-adic
epsilon factor εl(X,F ⊗ G) in terms of the global epsilon factor of F and a certain intersection
number associated to det(G) and the Swan class of F . In this article, we prove an analog of this
conjecture for global de Rham epsilon factors in the classical setting of DX -modules on smooth
projective varieties over a field of characteristic zero.
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1. Introduction

Let X denote a smooth proper variety of dimension d over a finite field F of characteristic
p, and let G be a smooth étale Ql (resp. Fl) sheaf. Then, one has the usual global l-adic epsilon
factor

εl(X,F) :=
2d∏
q=0

det(−σ : Hq
c(UF̄ ,F))(−1)q ,

where σ ∈ Gal(F̄ /F ) is the geometric Frobenius. In this setting, Kato and Saito conjectured
the following ‘localization’ formula for the epsilon factor of the tensor product:

Conjecture. ([3], 4.3.11) Let F be a constructible sheaf on X, and G be a smooth sheaf on X.
Then one has

εl(X,F ⊗ G) = εl(X,F)rk(G) · 〈det(G),CC(F)〉.
Here rG denotes the rank of G, and 〈−,−〉 denotes a pairing defined using the class field theory
which we do not recall here.
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When X is a proper smooth variety over a field k of characteristic 0, the second author
constructed the de Rham epsilon factor formalism in ([8]). More precisely, let K(DX) denote
the K-theory spectrum of coherent DX -modules, and K(T ∗X) denote the K-theory spectrum of
coherent sheaves. Then he constructed a map of spectra

ε : K(DX)→ K(T ∗X).

At the level of Grothendieck groups, given a holonomic module F , [ε(F)] ∈ K0(T ∗X) is the class
[grF (F)] where F is a good filtration of F . It is well-known that the class is independent of the
choice of good filtration. The composition of ε with pullback by certain twist of the zero-section
followed by the push-forward RΓ: K(X)→ K(k) is homotopic to the de Rham cohomology map
RΓdR (cf. Lemma 2.7.4). In particular, passing to Grothendieck groups, we may proceed via
ε in order to compute the Euler-Poincaré characteristic. Moreover, an automorphism f of F
determines an element in π1K(DX) whose image under the morphism RΓdR gives an element
of π1K(k) ∼= k×. The latter is precisely the determinant of the induced automorphism on the
de Rham cohomology of F . In ([8]), a ‘microlocalized’ version of ε was also constructed, which
allows one to pass to the K-theory of holonomic DX -modules and construct a morphism of
spectra

CC : Khol(DX)→ K(d)(X,−).

Here Khol(DX) is the K-theory spectrum of holonomic DX -modules, and K(d)(X,−) is part of
Levine’s homotopy coniveau tower. We do not recall the definition here, but only note that
π0(K(d)(X,−)) = CH0(X) and, at the level of π0, CC associates to the class of a holonomic
DX -modules to the zero cycle given by pulling back it’s characteristic cycle by the zero section.
Our main result is the following analog of the Kato-Saito localization formula in the de Rham
and K-theoretic setting:

Theorem (cf. 4.1.1). Let d be the dimension of X. The following diagram commutes up to
homotopy:

KX(DX) ∧Khol(DX)
⊗ //

for∇∧CC
��

Khol(DX)

RΓdR

��
K(X) ∧K(d)(X,−)

〈−,−〉K(d,−)

// K(k).

The pairing 〈−,−〉K(d,−) is an analog in our setting of the pairing appearing in the conjecture

above. The usual dictionary between connective spectra and Picard groupoids allows one to get
formulas for determinants of endomorphisms, and, in particular, by taking π1 of the commutative
diagram above we get an equality of actual numbers analogous that in the conjecture above.
We refer the reader to Theorem 4.3.1 for a precise statement. We note that this particular
consequence can be shown with a much simpler argument as described in loc. cit.. On the other
hand, by the same method, we also obtain similar formulas in the setting of correspondences (and
not just endomorphisms). In particular, suppose we are given an automorphism ϕ of X. Then
a correspondence of a DX -module F is an isomorphism F → ϕ∗F . Given a correspondence,
it induces an automorphism on the cohomology RΓdR(X,F), and we may again consider the
determinant of this automorphism. We also obtain a localization formula in this setting.
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We note that, after most of this paper is written, the original conjecture of Kato and Saito
has been proven, with some modification of the definition of characteristic cycles and following
recent developments in ramification theory for l-adic sheaves, in ([11]). However, following
the philosophy of Beilinson (cf. [1]), we believe that the K-theoretic method gives a different
perspective on localization formulas for epsilon factors. In principal, proving the formula at the
level of K-theory spectra should also give formulas in higher K-theory. At the level of K0 (resp.
K1) one gets formulas for the Euler characteristic (resp. determinants). It would be interesting
to see the consequences at the level of K2 (or higher K-groups).

Let us explain the structure of the paper. The paper begins with collecting some materials
from K-theory used in this paper. In particular, we recall some basic properties of Levine’s
homotopy coniveau tower. In §3, we define the pairing 〈−,−〉K(d,−), and prove a key vanishing

lemma 3.7.1. This allows us to compute the pairing in the setting of correspondences. We
formulate and prove the localization formula in the last section. The localization formula as an
equality of values is especially easy to prove when we are given actual automorphism of modules.
We conclude the paper by providing an elementary proof of this simple case.

2. Background

In this article, we shall make use of K-theory spectra and their associated Picard groupoids.
However, our applications will mostly use these constructions in a formal manner. We briefly
recall the required concepts and constructions for ease of exposition.

2.1. (Spectra) In the following, we fix a symmetric monoidal category of spectra and denote
it by S. For example, one could take for S Lurie’s (∞, 1)-category of spectra or the category
of symmetric spectra. We shall only make use of this category in a formal manner. Moreover,
our results on traces only depend on the associated homotopy category (which are all known to
be equivalent for the various models for spectra). Recall that S is a proper simiplicial model
category. In particular, one has functorial fibrant-cofibrant replacements. In the following, we
shall assume all our spectra are fibrant-cofibrant. We shall denote by ∧ the monoidal structure
in S.

The homotopy category of S is denoted by Ho(S). By definition, this is the localization of S
with respect to the weak equivalences. A weak equivalence of spectra P → Q can be inverted as
a morphism in the homotopy category. However, in general such a morphism cannot be inverted
as a morphism of spectra. To remedy this situation, one must use the more general notion of
a homotopy morphism of spectra. A homotopy morphism P → Q consists of a contractible
simplicial set K and a genuine morphism of spectra f : K ∧ P → Q. We refer to K as the base
of the homotopy morphism, and by abuse of notation we shall denote the homotopy morphism
simply by f : P → Q. Given two homotopy morphisms f, g with bases Kf ,Kg, an identification
of f and g is a homotopy morphism h with base Kh together with morphisms Kf → Kh ← Kg

such that f, g are the respective pullbacks of h. One can define the composition of two homotopy
morphisms f : P → Q and g : Q → R as the composition Kg ∧ Kf ∧ P → Kg ∧ Q → R. A
homotopy morphism from a sphere spectrum to a given spectrum P will be referred to as a
homotopy point of P . If f and g are identified, then they induce the same maps on homotopy
groups. A weak equivalence between fibrant-cofibrant spectra can be canonically inverted as a
homotopy morphism. We refer to ([8], 2.1) or ([1], 1.4(ii)) for the details. We note that in the
following the language of homotopy morphisms is not necessary, since, for our purposes, we could
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work directly in the homotopy category. However, it is a convenient notion for constructions at
the level of actual spectra (rather than the homotopy category).

2.2. (K-theory Spectra) Let E be a small exact category. Then Quillen’s K-theory construc-
tion gives a functor from the category of small exact categories to the category of spectra. If
F1 : E1 → E2 and F2 : E2 → E3 are exact functors, then one has K(F2) ◦ K(F1) = K(F2 ◦ F1).
More generally, a natural isomorphism of functors induces a homotopy equivalence of the corre-
sponding morphisms of K-theory spectra. By taking a large enough Grothendieck universe, we
may assume all our categories are small.

More generally, Waldhausen associates to any category with cofibrations and weak equiva-
lences a corresponding K-theory spectrum. Furthermore, an exact functor between Waldhausen
categories induces a morphism between the corresponding spectra. In this article, we shall
mostly be interested in complicial bi-Waldhausen categories and complicial exact functors; we
refer the reader to ([10]) for details. If E is an exact category, then Cb(E) is a complicial bi-
Waldhausen category with weak equivalences. A fundamental result of Thomason–Trobaugh–
Waldhausen–Gillet ([10]) shows that the inclusion of E into Cb(E) as degree zero morphisms
induces a canonical weak equivalence of spectra K(E) → K(Cb(E)). Here the right side is the
Waldhausen K-theory spectrum associated to Cb(E). This allows us to canonically identify var-
ious Quillen and Waldhausen K-theory spectra. In the following, we shall always assume all our
spectra to be fibrant-cofibrant. In particular, the machinery from the previous section will allow
us to invert various weak equivalences canonically as homotopy morphisms.

Given a Waldhausen category A, we denote by Atri the associated homotopy category given
by inverting the weak equivalences; note that this is a triangulated category. If F : A → B
is a complicial exact functor between two complicial bi-Waldhausen categories such that the
induced map on homotopy categories is an equivalence of categories, then the induced map on
K-theory spectra is a weak equivalence. We will often consider derived functors which are a
priori only defined on Atri. Usually, these can be lifted to functors on certain full complicial
bi-Waldhausen subcategories C ⊂ A such that the inclusion induces an equivalence on the
associated triangulated categories. Using the formalism of homotopy morphisms, we can lift the
derived functor to a morphism of K-theory spectra. A typical application is the following: Let
X be a proper scheme over k, and let K(X) be the K-theory spectrum of perfect complexes on
X. Since X is proper, we can define RΓ : Db

perf(X)→ Db
perf(k). The above approach allows us to

lift this to a homotopy morphism RΓ : K(X)→ K(k), where K(X) is the K-theory spectrum of
the category of perfect complexes on X and similarly for K(k). First, we may consider the (full)
complicial bi-Waldhausen sub-category of flasque perfect complexes. On this subcategory, RΓ is
represented by Γ. Furthermore, the properness assumption implies that Γ preserves perfectness.
We refer to the article by Thomason–Trobaugh ([10]) for more details.

Remark 2.2.1. Let X be a smooth projective variety over a field k, and DX the sheaf of
differential operators on X. Let K(DX) denote the K-theory spectrum of complexes of coherent-
DX -modules. Then, via the above procedure, the DX -module pushforward induces a homotopy
morphism RΓdR : K(DX) → K(k). For example, one can take the usual locally free resolution
by the de-Rham complex and restrict to flasque complexes.

2.3. (Picard groupoids, determinants, and traces) We recall some basic facts about Picard
groupoids and determinants which will be useful in the following. We refer to the beautiful
article ([2]) for the basic theory of Picard groupoids and determinants.
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A Picard groupoid P is a symmetric monoidal category in which every object is invertible,
which satisfies natural commutativity and associativity constraints. We refer the reader to ([8],
5.2) for a discussion of the definition. In the following, we shall always assume that our Picard
groupoids come with a fixed unit I. In order to avoid confusion, we shall denote by + the
monoidal structure in a Picard groupoid. The following will be one of our main examples of a
Picard groupoid.

Example 2.3.1. Let PicZ(X) denote the category whose objects are pairs (L, α) where L is a
line bundle on X, and α : X → Z is a continuous function. We define Hom((L, α), (L′, α′)) to be
the set of isomorphisms L → L′ if α = α′ and the empty set if α 6= α′. The monoidal structure
is given by setting

(L, α) + (L′, α′) := (L ⊗ L′, α+ α′).

The commutativity constraint

cL,L′ : (L, α) + (L′, α′) ∼= (L′, α′) + (L, α)

is given (locally) by sending lx ⊗ l′x to (−1)α(x)+α′(x)(l′x ⊗ lx).

Given a vector bundle V on X, one can associate to it an object det(V ) ∈ PicZ(X), where
α(x) is taken to be the rank of V at x. This construction gives rise to a determinant functor

det : Vect(X)iso → PicZ(X).

Here Vect(X)iso denotes the category whose objects are vector bundles on X, and morphisms
are isomorphisms of vector bundles. We do not recall the definition of a determinant functor
and refer to ([2]) for details. We only note here that there are natural isomorphisms

det(x⊕ y) ∼= det(x) + det(y)

which are compatible with commutativity constraints. In fact, one can define the notion of
a P-valued determinant functor for any exact category E or even derived categories of exact
categories (see [4]). Moreover, one can extend the determinant functor det above to the category
of coherent sheaves or even derived category of perfect complexes on X ([5], [4]).

One can associate natural homotopy groups to a Picard groupoid. By definition, π0(P) is
the group of isomorphism classes of objects in P and π1(P) := EndP(I). We note that if L ∈ P,
then there is a canonical isomorphism

EndP(L)→ π1(P)

defined as follows. If f : L→ L is an endomorphism, then it induces an endomorphism

f ⊗ Id : L⊗ L−1 → L⊗ L−1,

and composing this with the natural isomorphisms I → L ⊗ L−1 and L ⊗ L−1 → I gives an
element of EndP(I). We shall call this the trace of f , denoted Tr(f |L) ∈ π1(P). The following
example explains this terminology.

Example 2.3.2. One has π1(PicZ(k)) = k× for a field k. An automorphism f : V → V of a
finite dimensional vector space over k, gives a map

det(f) : (det(V ), dim(V ))→ (det(V ), dim(V ))

in PicZ(k). One can check that the Tr(det(f)| det(V )) ∈ k× is the usual determinant of f .
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The following Lemma is immediate, and only recorded here for future use:

Lemma 2.3.3. Let P be a Picard groupoid, and L ∈ P.
(1) If Id : L→ L is the identity, then Tr(Id|L) = Id ∈ EndP(I).
(2) If f, g : L→ L denote two automorphisms, then

Tr(f ◦ g|L) = Tr(f |L) ◦ Tr(g|L).

2.4. (Picard groupoids and Spectra) Let Pic denote the category of Picard groupoids. We let
Ho(Pic) denote the homotopy category of Picard groupoids. This is by definition the category
of Picard groupoids localized at equivalences of Picard groupoids. It is well-known that the
category of Picard groupoids identifies homotopically with the category of connective (i.e. all
negative homotopy groups vanish) spectra ([8], §5). In particular, there are natural adjoint
functors Π : S≥0 → Pic and B : Pic → S≥0 which induce an equivalence on the associated
homotopy categories. Here B takes a Picard groupoid to its usual classifying space and Π is the
fundamental groupoid associated to a connective spectrum.

This construction allows one to view the Picard groupoid associated to K-theory as a uni-
versal determinant functor. Let E be an exact category and Cb(E) denote the corresponding
Waldhausen category of bounded chain complexes in E . The homotopy point construction gives
rise to a natural universal determinant functor

det : (Db(E), qis)→ Π(K(Cb(E))).

In the following, we shall mostly be interested in applying this construction to the K-theory
spectrum of a scheme. In particular, let K(X) denote the K-theory spectrum vector bundles (or
coherent sheaves or perfect complexes) on a smooth scheme X. In that case, there is a natural
map, denoted by Det,

Π(K(X))
Det−−→ PicZ(X).

Moreover, the usual determinant functor det : (Db(X), qis) → PicZ(X) is compatible with the
previous two. In particular, the following diagram is commutative:

(Db(X), qis) //

''NN
NNN

NNN
NNN

Π(K(X))

��
PicZ(X).

Remark 2.4.1. Here, and in what follows, by a commutative diagram of categories we mean
commutative up to natural transformation.

We note that an explicit construction of a model for the Picard groupoid Π(K(X)) can be
given by Deligne’s virtual categories ([2]).

2.5. (Distributive Functors) In the following, we shall be interested in certain pairings of Picard
groupoids. Given two Picard groupoids P and P ′, let P×P ′ denote the product groupoid. Note
that we consider this as a mere groupoid (and not a Picard groupoid). A distributive functor is
a functor

〈−,−〉 : P × P ′ → P ′′

which satisfies some natural “bilinearity” or “distributive” conditions. We refer to ([2], 4.11)
for the precise definitions. The definition, in particular, implies that for each fixed L ∈ P (resp.
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L′ ∈ P), the induced functor 〈L,−〉 (resp. 〈−,L′〉) is a morphism of Picard groupoids. This
morphism is natural in L (resp. L′). Moreover, one also has natural isomorphisms

〈L1 + L2,L
′〉 ∼= 〈L1,L

′〉+ 〈L2,L
′〉 and 〈L,L′1 + L′2〉 ∼= 〈L,L′1〉+ 〈L,L′1〉.

We shall refer to such a distributive functor simply as a pairing of Picard groupoids. The
following will be one of our main examples of a pairing.

Example 2.5.1. Let X be an integral scheme over k. The tensor product ⊗ of line bundles
induces a distributive functor:

(−⊗−) : PicZ(X)× PicZ(X)→ PicZ(X).

Explicitly, it sends (L, α) ⊗ (L′, α′) := (L⊗α′ ⊗ L′⊗α, αα′). Note that for vector bundles G and
G′, one has det(G⊗G′) ∼= det(G)⊗ det(G′) in PicZ(X).

Lemma 2.5.2. Let 〈−,−〉 : P × P ′ → P ′′ be a distributive functor. Given f : L → L ∈ P and
g : L′ → L′ ∈ P ′, let 〈L,L′〉(f, g) := Tr(〈f, g〉|〈L,L′〉) ∈ π1(P ′′).

(i) For any L ∈ P, if f is the identity, then 〈L,L′〉(Id, g) is the image of Tr(g|L′) under
the induced map 〈I,−〉 : π1(P ′)→ π1(P ′′).

(ii) If fi : Li → Li ∈ P (i = 1, 2), then

〈L1 + L2,L
′〉(f1 + f2, g) = 〈L1,L

′〉(f1, g)〈L2,L
′〉(f2, g)

Any abelian group can be considered as a Picard groupoid. We will sometimes be interested
in a pairing of a Picard groupoids P and an abelian group G with values in a Picard groupoid
P ′′. By definition, this means that for each g ∈ G, we have a morphism of Picard groupoids
Fg : P → P ′ such that Fe = Id (where e ∈ G is the identity), and there are natural isomorphisms
Fg+h ∼= Fg + Fh. Note that Hom(P,P ′) is also a Picard groupoid, and such a pairing can be
interpreted as a morphism of groupoids

G→ Hom(P,P ′).
The following will be our central example of such a pairing.

Example 2.5.3. Let f : X → Spec(k) denote a smooth proper scheme over a field k, and Z0(X)
denote the abelian group of 0-cycles on X. Then we have a pairing

〈−,−〉 : PicZ(X)× Z0(X)→ PicZ(k)

defined as follows. If iZ : Z ⊂ X is a closed subscheme of dimension 0, let [Z] denote its class
in Z0(X). Then we set

〈(L, α), [Z]〉 := (det(πZ,∗i
∗
ZL),deg([Z])α).

Here πZ : Z → Spec(k) is the structure map, and deg([Z]) is the usual degree of the given
zero-cycle. This defines the pairing for all effective cycles, and then we extend by linearity.

Finally, we note that pairings of spectra induce pairings of Picard groupoids. We refer to ([9,
I, 5.1]) for details on the notion of bilinear pairings of spectra. Here we only note that a bilinear
pairing of spectra K1 and K2 with values in K3 is equivalent to giving a morphism of spectra

K1 ∧K2 → K3.

Furthermore, a bi-exact functor of exact categories (or Waldhausen categories) induces a bilinear
pairing of the corresponding K-theory spectra ([10], 3.15). Moreover, under the equivalence of
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categories between Picard groupoids and spectra, a bilinear map gives rise to a pairing of the
associated Picard groupoids. In particular, the usual tensor product of vector bundles induces
a pairing of spectra K(X) ∧ K(X) → K(X) and, therefore, a pairing Π(K(X)) × Π(K(X)) →
Π(K(X)). Moreover, this pairing is compatible with the one from Example 2.5.1 under Det :
Π(K(X))→ PicZ(X). In the following, we sometimes use the notation

P ∧ P ′ → P ′′

to mean a pairing P×P ′ → P ′′. We note that this should only be thought of as formal notation,
and the Picard groupoid P ∧ P ′ has not been defined.

Remark 2.5.4. One can take the fundamental Picard groupoid associated to BP ∧BP ′ as the
definition of P ∧ P ′. Moreover, there is an equivalence between pairings P × P ′ → P ′′ and
morphisms of Picard groupoids P ∧ P ′ → P ′′. However, we shall not need this in what follows.
Note that for strictly commutative Picard groupoids this construction is described in SGA 4
Expose XVIII.

2.6. (Levine’s Homotopy Coniveau Tower) In this subsection, X will be a smooth scheme of
finite type over a field k. Moreover, K(X) will denote the K-theory spectrum of coherent sheaves
on X. We recall the construction and some basic properties of Levine’s homotopy coniveau tower
associated to the K-theory of schemes which shall be used in the following. We refer to ([6], [7])
for details.

Let ∆n := Spec(k[t0, . . . , tr]/(Σjtj−1)) denote the usual n-simplex. These form a cosimplicial
scheme. A face of ∆n is a closed subscheme defined by equations of the form ti1 = · · · = tis = 0.
Then one defines

K(q)(X, p) := holim−−−→WKW (X ×∆p)

where the homotopy limit is taken over closed subschemes W ⊂ X ×∆p such that

codimX×F (W ∩ (X × F )) ≥ q

for all faces F ⊂ ∆p. These form a simplicial spectrum, and we let K(q)(X,−) denote the
corresponding total spectrum ([6], 1.5). Moreover, one has a tower of spectra

· · · → K(q)(X,−)→ K(q−1)(X,−)→ · · · → K(0)(X,−)← K(X)

where the arrow on the right is the natural augmentation map. This tower of spectra is referred
to as the homotopy coniveau tower. It satisfies the following properties proved by Levine:

(1) Given a morphism of smooth schemes F : X → Y there is a natural pull back morphism
on the corresponding coniveau towers.

(2) The augmentation map ε : K(X)→ K(0)(X,−) is a weak equivalence.

(3) The fibers K(p/p−1)(X,−) of the homotopy coniveau tower are naturally weak equivalent
to Bloch’s higher Chow groups cycles complex. In particular, there is a natural isomor-
phism CHd(X)→ π0(K(d)(X,−)) if d = dim(X). Moreover, the naturality implies that
this map is compatible with pull backs on Chow groups.

(4) Finally, we note that the tensor product induces natural (functorial) pairings:

K(d)(X,−) ∧K(d′)(X,−)→ K(d+d′)(X,−).
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Remark 2.6.1. The existence of pairing as in (4) is a deep theorem and relies on Levine’s
moving lemma for the homotopy coniveau tower. However, we shall only use the result in the
case where d′ = 0. In that case, K(0)(X,−) ∼= K(X), and the pairing is simply given by tensor
product. In particular, no ‘moving’ is required.

2.7. (Microlocalization map of K-theory of DX -modules) In this paragraph, X will denote a
smooth projective variety over a field k of characteristic zero. Below we recall the construction
of a microlocalization map for K-theory spectra of DX -modules. We refer to ([8]) for details.

Let K(DX) denote the K-theory spectrum of the abelian category of coherent DX -modules,
and similarly let KS(DX) denote the K-theory spectrum of the abelian category of coherent
DX -modules with singular support contained in S ⊂ T ∗X. Recall, any DX module M has
a good filtration F · such that the associated graded gives rise to a coherent OT ∗X -module.
This construction gives rise to a well-defined (i.e. independent of the choice of filtration) map
K0(DX)→ K0(T ∗X). One has an analogous statement in the setting of supports. The following
theorem extends this construction to the setting of higher K-theory.

Theorem 2.7.1. ([8]) Let X be as above. There is a natural microlocalization morphism of
K-theory spectra:

grS : KS(DX)→ KS(T ∗X).

Moreover, these are compatible with respect to the inclusions S ⊂ S′.

Let KF(DX) denote the K-theory spectrum of the exact category whose objects are pairs
(M,F) where (M,F) is a coherent DX -module and F is a good filtration. We can similarly
define KFS(DX). There is a natural map grF

S : KFS(DX) → KS(T ∗X) induced by sending a
pair (M,F) to grF (M). One also has a natural map ff : KFS(DX)→ KS(DX) given by simply
forgetting the filtration. By construction, grS ◦ ff is homotopic to grF

S .
Let Khol(DX) denote the K-theory spectrum of the abelian category of holonomic DX -

modules. The preceding theorem immediately gives the following corollary by passing to homo-
topy colimits.

Corollary 2.7.2. With notation as above, one has a morphism of spectra:

ε : Khol(DX)→ K(d)(T ∗X).

Proof. By definition, we may view the category of holonomic DX -modules as a direct limit of the
categories of the full sub-categories of DX -modules with singular support in a fixed codimension
d subset S ⊂ T ∗X. Since K-theory commutes with direct limits, we may write Khol(DX) as the
colimit of the corresponding spectra KS(DX). The result now follows from the previous theorem
by taking limits. �

Remark 2.7.3. Note that there is a natural map Khol(DX) → K(DX). Moreover, by the
compatibility of grS , one has a natural commutative diagram:

K(DX)
gr // K(T ∗X)

Khol(DX)
ε //

OO

K(d)(T ∗X)

OO
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Let f : X → Spec(k) denote the structure map, π : T ∗X → X the projection map, and
σ : X → T ∗X the zero section. Then f and σ induce morphisms of K-theory spectra (2.2)

K(X)
f∗−→ K(k) and K(T ∗X)

σ∗−→ K(X).

The canonical bundle ωX induces a natural morphism:

K(X)
(−⊗ωX)−−−−−→ K(X).

We define the twisted pull-back σ+ as the composition:

K(T ∗X)
σ∗−→ K(X)

(−⊗ωX)−−−−−→ K(X).

These give rise to a morphism f∗ ◦σ+ ◦ gr : K(DX)→ K(k). On the other hand, the DX -module
pushforward induces a morphism of K-theory spectra (2.2.1):

RΓdR : K(DX)→ K(k).

We have the following Lemma.

Lemma 2.7.4. The morphisms RΓdR and f∗ ◦ σ+ ◦ gr are homotopic.

Proof. For the first part, first note that the composition

K(X)→ K(DX)→ K(T ∗X)→ K(X)

is homotopic to the identity. Here the first map is the natural map induced by DX ⊗ (−), which
is a weak equivalence by a theorem of Quillen ([8]). Then one is reduced to showing that the
composition

K(X)
(−⊗ωX)−−−−−→ K(X)

f∗−→ K(k)

is homotopic to the composition

K(X)
(DX⊗−)−−−−−→ K(DX)

RΓdR−−−→ K(k).

The latter follows from the fact that the corresponding functors are naturally isomorphic on the
corresponding derived categories. �

Remark 2.7.5. We think of RΓdR as the global de Rham epsilon factor. Recall, at the level of
DX -modules, up to a shift, the DX -module push-forward computes de Rham cohomology of the
corresponding DX -modules.

2.8. (Global epsilon factors and tensor products) We record an elementary lemma computing
the global epsilon factor of a tensor product.

Lemma 2.8.1. The following diagram is commutative:

KX(DX) ∧K(DX)
gr∧gr //

(−⊗−)
��

KX(T ∗X) ∧K(T ∗X)

(−⊗−)
��

K(DX)
gr // K(T ∗X).
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Proof. The commutativity follows from the fact that gr commutes with tensor product if one of
the sheaves is a bundle with connection. To be precise, we note that it is enough to show that
the following diagram is homotopy commutative:

KX(DX) ∧K(X) //

(−⊗−)
��

KX(T ∗X) ∧K(T ∗X)

(−⊗−)
��

K(DX)
gr // K(T ∗X)

Here the top horizontal is given by (gr∧gr)◦ (Id∧ (DX ⊗−). Since K(X)→ K(DX)→ K(T ∗X)
is homotopic to π∗, the composition of the top horizontal and right vertical is homotopic to
π∗ ◦ (−⊗OX

−). On the other hand, there is a natural map KX(DX)→ KF(DX), and similarly
K(X)→ KF(DX), and the left vertical factors through KF(DX)∧KF(DX). The first map here
just gives a bundle with connection the trivial filtration. It’s now clear that the composition of
this with lower horizontal with the left vertical is also homotopic to π∗ ◦ (−⊗OX

−). �

3. Comparison of traces for various pairings of Picard groupoids

In this subsection, we recall the construction of some pairings on K-theory spectra at the
level of Levine’s homotopy coniveau tower, and make some computations of traces of tensor
products in this setting.

3.1. (Pairings on K-theory with supports) Given a closed subset Z ⊂ X, there is a natural
pairing of K-theory spectra

K(X) ∧KZ(X)
⊗−→ KZ(X)

induced by the tensor product ([10], 3.15). Since X is smooth, Quillen’s localization theorem im-
plies that the natural map K(Z)→ KZ(X), induced by the push-forward, is a weak-equivalence.
If iZ : Z ↪→ X is a reduced closed subscheme of dimension 0, and hence regular, then we may
identify K(Z) with the K-theory spectrum of locally free sheaves. Moreover, one also has a
natural pairing

K(X) ∧K(Z)→ K(Z) ∧K(Z)→ K(Z)

where the first map is induced by i∗Z ∧ Id. We record the following standard lemma for future
use.

Lemma 3.1.1. The following diagram is commutative:

K(X) ∧KZ(X) // KZ(X)

K(X) ∧K(Z) //

Id∧iZ,∗

OO

K(Z)

OO

Proof. This is a special case of the projection formula ([10], 3.17). �

We shall now suppose Z is a reduced closed subscheme of dimension zero. One has a natural
norm map (given by the push-forward):

N : K(Z)→ K(k).
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Similarly, one has the usual push forward π∗ : KZ(X) → K(k). Composing the pairings above
with these push-forward maps give rise to pairings:

〈−,−〉K : K(X) ∧KZ(X)→ K(k)

and

〈−,−〉K : K(X) ∧K(Z)→ K(k).

By the previous lemma these two pairings are identified via the natural weak equivalence iZ,∗ :
K(Z) → KZ(X). Therefore, in the following we shall use the two interchangeably and use the
same notation to denote the two pairings.

Since the pairings above are compatible with respect to inclusions Z ′ ⊂ Z, we may pass to
homotopy limits and deduce a pairing:

〈−,−〉K(d) : K(X) ∧K(d)(X)→ K(k).

Note this pairing is simply the composition

K(X) ∧K(d)(X)
(−⊗−)−−−−→ K(d)(X)

π∗−→ K(k).

Here we define π∗ as the one induced by taking homotopy limits of the maps π∗ : KZ(X)→ K(k).

Remark 3.1.2. We may also define π∗ by taking homotopy limits of the compositions KZ(X)→
K(Z)

N−→ K(k). The two constructions are homotopic.

3.2. (Pairings on the homotopy coniveau tower) We now explain how the constructions of the
previous paragraph lift to Levine’s homotopy coniveau tower. Recall that we have a natural
augmentation morphism

ε : K(d)(X)→ K(d)(X,−).

Moreover, there are natural pairings

K(r)(X,−) ∧K(s)(X,−)→ K(r+s)(X,−).

In particular, we may consider the composition

K(X) ∧K(d)(X)→ K(0)(X,−) ∧K(d)(X,−)→ K(d)(X,−).

Moreover, composing with π
(d)
∗ : K(d)(X,−) → K(0)(X,−) → K(X)

f∗−→ K(k) gives rise to a
pairing:

〈−,−〉K(d,−) : K(X) ∧K(d)(X,−)→ K(k).

Here we have inverted the augmentation map K(X) → K(0)(X,−). This pairing is compatible
with the pairing constructed in the previous paragraph. Namely, we have the following lemma.

Lemma 3.2.1. The following diagram is commutative:

K(X) ∧K(d)(X)
〈−,−〉K

(d) //

Id∧ε
��

K(k)

Id

��
K(X) ∧K(d)(X,−)

〈−,−〉K
(d,−) // K(k)
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Proof. First, recall that the tensor product is compatible with the augmentation. Therefore, one

is reduced to showing that K(d)(X)
ε−→ K(d)(X,−)

π
(d)
∗−−→ K(k) is homotopic to K(d)(X)

π∗−→ K(k).

The latter is evident from the construction of π
(d)
∗ . �

Remark 3.2.2. One also has a product K(T ∗X) ∧K(d)(T ∗X,−) → K(d)(T ∗X,−). By functo-
riality, the following diagram commutes:

K(T ∗X) ∧K(d)(T ∗X,−) //

σ∗∧σ∗
��

K(d)(T ∗X,−)

σ∗

��
K(X) ∧K(d)(X,−) // K(d)(X,−)

3.3. (Pairings on Picard groupoids) Recall, pairings on spectra give rise to pairings on the
corresponding fundamental Picard groupoids (2.5). In particular, the pairing 〈−,−〉K(d) induces

a pairing

〈−,−〉Π(d) : Π(K(X)) ∧Π(K(d)(X))→ Π(K(k)).

By definition, it is defined as the composition

Π(K(X)) ∧Π(K(d)(X))→ Π(K(d)(X))→ Π(K(k)),

where the first map is induced by the tensor product and the second by π∗. On the other hand,
one has the following pairing which is a generalization of Example 2.5.1:

〈−,−〉 : PicZ(X) ∧ PicZ(Z))→ PicZ(Z).

Explicitly, this pairing sends (L,α) ∈ PicZ(X) and (M,β) ∈ PicZ(Z) to the element (L|βZ ⊗
Mα, α|Z + β). Recall that we have the universal determinant map Det : Π(K(X)) → PicZ(X)
and similarly for Z. As before (2.5), this gives rise to a commutative diagram:

Π(K(X)) ∧Π(K(Z)) //

��

Π(K(Z))

��
PicZ(X) ∧ PicZ(Z) // PicZ(Z).

The push-forward induces a norm map

N : PicZ(Z)→ PicZ(k).

In particular, one has a natural pairing

N ◦ 〈−,−〉 : PicZ(X) ∧ PicZ(Z)→ PicZ(k)

By abuse of notation, we shall also denote this pairing by 〈−,−〉. Explicitly, this pairing sends

(L,α) ∈ PicZ(X) and (M,β) ∈ PicZ(Z) to the element (det(πZ,∗(L|βZ ⊗Mα), d(α + β)) where
πZ : Z → Spec(k) is the natural structure map, and d is the degree of this map. The previous
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remarks show that the following diagram commutes:

Π(K(X)) ∧Π(K(Z))
〈−,−〉Π //

��

Π(K(k))

��
PicZ(X) ∧ PicZ(Z)

〈−,−〉 // PicZ(k).

Remark 3.3.1. Recall that the map Det: Π(K(k)) → PicZ(k) is an isomorphism of Picard
groupoids. In the following, we shall make this identification in our resulting pairings.

3.4. (Picard groupoid pairings coming from coniveau tower) We now descend the pairings
〈−,−〉K(d,−) to the level of Picard groupoids. In particular, taking fundamental groupoids gives

a pairing:

〈−,−〉Π(d,−) : Π(K(X)) ∧Π(K(d)(X,−))→ PicZ(k).

Combining everything gives rise to the following commutative diagrams which we record as a
lemma for future use:

Lemma 3.4.1. The following diagrams commute (up to natural transformations):

Π(K(X)) ∧Π(K(d)(X))

��

// PicZ(k)

��
Π(K(X)) ∧Π(K(d)(X,−)) // PicZ(k),

Π(K(X)) ∧Π(K(Z))

��

// PicZ(k)

��
Π(K(X)) ∧Π(K(d)(X)) // PicZ(k).

Proof. The commutativity of the first diagram follows from Lemma 3.2.1 and that of the second
follows from the remarks in 3.1. �

3.5. (Compatibility of various traces of endomorphisms) We explain how the constructions of
the previous paragraph pass to traces in the presence of endomorphisms. Given G ∈ PicZ(X)
(resp. F ∈ PicZ(X)) and an endomorphism g (resp. f) of G (resp. F) we have an induced
endomorphism g⊗ f of 〈G,F〉 ∈ PicZ(k). Therefore, we have an element Tr(g⊗ f) ∈ PicZ(k) =
k×. We shall denote the latter trace by 〈G,F〉(g, f). Similarly, given G ∈ Π(K(X)) (resp.

F ∈ Π(K(d)(X)), F ′ ∈ Π(K(d)(X,−))) and g (resp. f , f ′) an endomorphism of G (resp. F ,
F ′), we can define the trace 〈G,F〉Π(d)(g, f) ∈ k× (resp. 〈G,F ′〉Π(d,−)(g, f

′) ∈ k×). Note, that a

pair (F , f) of an object and endomorphism in Π(K(d)(X)) can also be considered as an object

and endomorphism of Π(K(d)(X,−)) simply by considering its image under the natural map

Π(K(d)(X))→ Π(K(d)(X,−)). We record the following corollary of the previous result for future
reference.

Corollary 3.5.1. Let G ∈ Π(K(X)) and F ∈ Π(K(d)(X)), and g (resp. f) denote an endomor-
phism of G (resp. F). Then one has

〈G,F〉Π(d,−)(g, f) = 〈G,F〉Π(d)(g, f).

Proof. This is a direct consequence of Lemma 3.4.1. �

By definition, πi(Π(K(d)(X))) = limπi(K(Z)) where the direct limit is over closed reduced

subschemes Z of dimension zero. Therefore, for any object F ∈ Π(K(d)(X)) and endomorphism
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f : F → F , we can choose a Z such that the pair (F , f) lifts to Π(K(Z)). In particular, there is
a pair (FZ , fZ) consisting of an object and an endomorphism in Π(K(Z)), and an isomorphism

h of the image of this pair in Π(K(d)(X)) (under the natural map Π(K(Z))→ Π(K(d)(X))) with
the pair (F , f). In this setting, we have the following lemma;

Lemma 3.5.2. With notation as above, 〈G,F〉Π(d)(g, f) = 〈G,FZ〉Π(g, fZ). Moreover, we have

an equality 〈G,FZ〉Π(g, fZ) = 〈Det(G),Det(FZ)〉(g, fZ).

Proof. The first statement follows from the second commutative diagram in 3.4.1 after passing
to Picard groupoids and traces. The second similarly follows from the remarks in 3.3. �

3.6. (Formula for traces of tensor products of endomorphisms) In this paragraph, we prove
an elementary formula for traces of tensor products of endomorphisms. In 3.9, shall prove a
similar formula in the more general the setting of correspondences. The formula presented in
this paragraph will be an easy corollary of that more general formula. However, we present the
simpler version here since the proof has some features of the more general situation and might
be useful in understanding the more complicated version presented later.

Suppose we are given G ∈ Π(K(X)) (resp. F ∈ Π(K(d)(X))) with an endomorphism f : F →
F and g : G → G as before. For any element of G ∈ Π(K(X)), we let rG (the rank of G) denote
its image in π0(PicZ(X)) = Z. In this setting, one has the following standard formula at the
level of traces.

Proposition 3.6.1. With notation as above:

〈G,F〉Π(d)(g, f) = Tr(π∗(f)|π∗(F))rG 〈G,F〉Π(d)(g, Id).

Here, π∗(f) and π∗(F) are the images under the natural map Π(K(d)(X))
π∗−→ PicZ(k).

Proof. By corollary 3.5.2, we are reduced to showing that

〈G,F〉(g, f) = Tr(det(πZ,∗(f))| det(πZ,∗(F)))rG 〈G,F〉(g, Id),

where G ∈ PicZ(X) and F ∈ PicZ(Z). Here iZ : Z ↪→ X is a closed integral subscheme of
dimension zero and πZ : Z → Spec(k) is the structure map. Since (by 2.3.3)

〈G,F〉(g, f) = 〈G,F〉(g, Id)〈G,F〉(Id, f),

we are reduced to showing that

〈G,F〉(Id, f) = Tr(det(πZ,∗(f)|det(πZ,∗(F)))rG .

We may further assume Z is irreducible. Then by definition (ignoring the grading)

〈G,F〉 = det(iZ,∗(G|Z ⊗F)) = det(iZ,∗(G|Z))rF ⊗ det(iZ,∗(F))rG .

The first equality here is consequence of the fact that iZ,∗ commutes with tensor products and
sends locally free sheaves to locally free sheaves (since iZ is finite and flat). The second is the
usual formula for determinant of a tensor product (i.e. the fact that det is a distributive functor).
Moreover, we are computing the trace of the morphism induced by Id⊗ f on this object. Since
the trace of the determinant of Id is one, we have

〈G,F〉(Id, f) = Tr(det(iZ,∗(f)|det(iZ,∗(F)))rG ,

which concludes the proof �
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3.7. (A key vanishing Lemma) We would like a formula similar to that of the last paragraph for

〈G,F〉Π(d,−)(g, f) where F ∈ Π(K(d)(X)). If the pair (F , f) can be lifted to Π(K(d)(X)), then we

would get such a formula as a consequence of the previous proposition. Unfortunately, while we
may lift any such object F to Π(K(d)(X)), it is not always possible to lift the endomorphism f .
However, we shall see that the desired formula (in the more general setting of correspondences)
will be an easy consequence of the following lemma.

Lemma 3.7.1. Let X be a smooth projective variety of dimension d and W be a closed subscheme
of codimension > 0. The map π1K(d)(X,−)→ π1K(d)(X,−) induced by ⊗OW is trivial.

Proof of Lemma 3.7.1. First, we remark that ([6], Thm 2.6.2) holds whenX is projective. Below,
we shall follow the notation of ([6], Thm 2.6.2). Using that theorem for C = {W} and e = 0,

we get a weak equivalence K(d)(X,−)C,e
∼−→ K(d)(X,−). Now, the map ⊗OW factors through

K(d+1)(X,−)C,e → K(d)(X,−)C,e, and we have the commutative diagram

K(d)(X,−)C,e
⊗OW //

��

K(d+1)(X,−)C,e //

��

K(d)(X,−)C,e

��
K(d)(X,−)

⊗OW

22K(d+1)(X,−) // K(d)(X,−).

For n ∈ {d, d+ 1}, consider the spectral sequences

(Ep,q1 )
(n)
C,e = π−qK

(n)(X,−p)C,e +3

��

π−p−qK
(n)(X,−)C,e

∼
��

(Ep,q1 )(n) = π−qK
(n)(X,−p) +3 π−p−qK

(n)(X,−).

By dimension reasons, we have K(d+1)(X, 0)C,e = K(d+1)(X, 0) = {∗}, which implies (E0,q
1 )

(d+1)
C,e =

(E0,q
1 )(d+1) = 0 for any q. Thus, (E−1,0

2 )
(d+1)
C,e

∼= (E−1,0
2 )(d+1) ∼= π1K(d+1)(X,−).

Now, we have the following big commutative diagram:

π1K(d)(X,−)C,e
⊗OW //

����

π1K(d+1)(X,−)C,e

∼

// π1K(d+1)(X,−)

∼

// π1K(d)(X,−)

(E−1,0
∞ )

(d)
C,e

∼
(E−1,0

2 )
(d)
C,e ⊗OW

// (E−1,0
2 )

(d+1)
C,e

// (E−1,0
2 )(d+1)

K

OOOO

// (E−1,0
1 )

(d+1)
C,e

OOOO

where K := Ker
(
(E−1,0

1 )
(d)
C,e → (E0,0

1 )
(d)
C,e
)
. Take α ∈ π1K(d)(X,−) ∼= π1K(d)(X,−)C,e. Our goal

is to show that the image of α by the composition of the homomorphisms of the first row is
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trivial. By the diagram above, there exists

α̃ ∈ K ⊂ (E−1,0
1 )

(d)
C,e = π0K(d)(X, 1)C,e

such that α ⊗ OW coincides with α̃ ⊗ OW in π1K(d+1)(X,−)C,e. It suffices to show that the

image of α̃⊗OW in (E−1,0
2 )(d+1) is 0.

There exists a closed subscheme Z ⊂ X × ∆1 belonging to S(d)
X,C,e(1) (in particular, dimen-

sion 1) such that α̃ can be lifted to KZ(X, 1), which we denote by α̃′. We have α̃′ ⊗ OW ∈
π0KZ∩pr−1(W )(X × ∆1) (where pr : X × ∆1 → X is the projection). Since Z ∈ S(d)

X,C,e(1), the

intersection Z ∩ pr−1(W ) is 0-dimensional. By definition of S(d)
X,C,e(1), note that Z ∩ pr−1(W ) ⊂

X × (∆1 \ {0, 1}). The canonical coordinates of ∆2 is denoted by t1, t2. Take a closed point
(w, s) ∈ X × (∆1 \ {0, 1}). Let

H(w,s) := {w} ×
{
t1 + st2 − s = 0

}
⊂ X ×∆2,

namely the closed subscheme in {w}×∆2 which is the line connecting (s, 0) and (0, 1). We have
the morphism ρ(w,s) : H(w,s) → {(w, s)} ↪→ X ×∆1. Now, put

β :=
⊕

(w,s)∈Z∩pr−1(W )

ρ∗(w,s)(α̃
′ ⊗OW ) ∈ π0KH(X ×∆2) (H :=

⋃
(w,s)∈Z∩pr−1(W )

H(w,s))

By construction, this will give a homotopy between α̃′ ⊗OW and 0. Indeed, let f1 : X ×∆1 ↪→
X×∆2 be the map defined by t2 = 1, f3 by t1 = 0, f2 by t1 + t2 = 1 sending 0, 1 to (0, 1), (1, 0)
respectively. The homotopy β defines

f∗1 (β) + f∗2 (β) ∼ f∗3 (β).

On the other hand, f∗1 (β) = α̃′ ⊗OW and f∗2 (β) = f∗3 (β), thus α̃′ ⊗OW is homotopic to 0. �

3.8. (An elementary projection formula) In this paragraph, we recall an elementary projection
formula, which will be used in the following paragraph in the discussion correspondences. Let
ϕ : X → X be an automorphism. In this setting, we have the following elementary projective
formula.

Lemma 3.8.1. The following diagram is commutative:

K(X) ∧K(d)(X,−)
Id∧ϕ∗ //

ϕ∗∧Id
��

K(X) ∧K(d)(X,−)

(−⊗−)
��

K(X) ∧K(d)(X,−)
ϕ∗◦(−⊗−) // K(d)(X,−)

Proof. By definition of (−⊗−), we are reduced to showing the corresponding statement for each

level of the simplicial spectrum corresponding to K(d)(X,−). In that case, it follows directly
from Thomason’s projection formula for K-theory spectra ([10]). �



18 TOMOYUKI ABE AND DEEPAM PATEL

It follows that we have a commutative diagram at the level of Picard groupoids:

Π(K(X)) ∧Π(K(d)(X,−))
Id∧ϕ∗ //

ϕ∗∧Id
��

Π(K(X)) ∧Π(K(d)(X,−))

(−⊗−)
��

Π(K(X)) ∧Π(K(d)(X,−))
ϕ∗◦(−⊗−) // Π(K(d)(X,−))

In particular, for G ∈ Π(K(d)(X,−)) and F ∈ Π(K(d)(X,−)) we have natural isomorphisms

projG,F : ϕ∗(ϕ
∗(G)⊗F)→ G ⊗ ϕ∗F .

3.9. (Formula for traces of tensor products of correspondences) We shall now prove a formula
for the traces of tensor products of correspondences. Let ϕ : X → X be an endomorphism. Then
one has an induced map ϕ∗ : K(d)(X,−)→ K(d)(X,−). Moreover, we also have the pushforward
map

π
(d)
∗ : K(d)(X,−)→ K(k).

Note that π
(d)
∗ ◦ϕ∗ is homotopic to (π

(d)
∗ ◦ϕ)∗ = π

(d)
∗ . Below, we use the same notation to denote

the corresponding induced morphisms on the associated Picard groupoids.

Definition 3.9.1. Let F ∈ ΠK(d)(X,−). A correspondence ΦF on F is a morphism ΦF : F →
ϕ∗F in ΠK(d)(X,−).

Let (F ,ΦF ) be an object in ΠK(d)(X,−) endowed with a correspondence. Then we have
morphisms

π
(d)
∗ (ΦF ) : π

(d)
∗ (F)→ π

(d)
∗ (ϕ∗F) ∼= π

(d)
∗ (F)

in ΠK(k).
Suppose now we are given G ∈ ΠK(X) and a morphism ΨG : ϕ∗G → G. Then F ⊗ G ∈

ΠK(d)(X,−) is endowed with a correspondence as follows:

ΨG ⊗ ΦF : G ⊗ F Id⊗ΦF−−−−→ G ⊗ ϕ∗F
projG,F←−−−−− ϕ∗(ϕ∗(G)⊗F)

ϕ∗(ΨG⊗Id)−−−−−−−→ ϕ∗(G ⊗ F).

In the following, we shall sometimes denote the trace Tr(π
(d)
∗ (ΨG ⊗ ΦF )) ∈ k× by

〈G,F〉Π(d,−) (ΨG ,ΦF ).

Before stating the next proposition, we first set-up some notation. Recall, that CH0(X) =

π0(K(d)(X,−)) (2.6), and therefore we have a surjection

Z0(X)→ π0(K(d)(X,−)).

It follows that given [F ] ∈ π0(K(d)(X,−)), there exists Z ∈ Z0(X) such that [Z] = [F ] ∈
CH0(X). We fix such a Z, and the corresponding element OZ ∈ K0(X). Note Z gives rise
to an object, also denoted OZ , in Π(Kd(X)) and Π(Kd(X,−). Furthermore, [Z] = [F ] can be
interpreted as saying that there is an isomorphism OZ ∼= F in Π(Kd(X,−).

Remark 3.9.2. Note that here OZ is a virtual object. If Z is an effective cycle then OZ is
precisely the structure sheaf of the corresponding artinian scheme.
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Recall that for an object G ∈ Π(K(X)) we can consider its generic rank rG (i.e. the image
of G in π0(PicZ(X)) = Z), and that there is an object G0 ∈ Π(K(X)) of generic rank 0 such
that G ∼= det(OrGX ) + G0 ∈ Π(K(X)). For the latter statement, note that by a Lemma of
Serre, any object [G] ∈ K0(X) can be written as [G0] + [OrGX ] ∈ K0(X). It follows that one has
an isomorphism between G and det(G0) + det(OrGX ) in Π(K(X)). In the following, we denote
det(OrGX ) simply by OrGX and det(G0) by G0. Note that OX comes equipped with a canonical
correspondence can : π∗OX → OX , and therefore OrGX also comes equipped with a canonical
correspondence (also denoted can). As a result, G0 = G + (OrGX )−1 also comes equipped with a
correspondence. We shall denote the it by ΨG0 .

Proposition 3.9.3. Let X and ϕ : X → X be as above. Suppose G ∈ ΠK(X), F ∈ ΠK(d)(X,−),
and both are endowed with correspondences ΨF : ϕ∗G → G and ΦF : F → ϕ∗F . Moreover, we
fix an OZ as above and a correspondence ΦZ of OZ . Then one has the following formula:

Tr(π
(d)
∗ (ΨF ⊗ ΦG)) = Tr(π

(d)
∗ (ΦF ))rG × 〈G0,F〉Π(d,−) (ΨG0 ,ΦZ).

Moreover, 〈G0,F〉Π(d,−) (ΨG0 ,ΦZ) is independent of the choice of Z and ΦZ .

Proof. Let G1 := OrGX . Then G = G1 +G0 ∈ Π(K(X)). Moreover, by definition, ΨG = Can+ΨG0 .

Since 〈−,−〉Π(d,−) is distributive we have:

Tr(π
(d)
∗ (ΨF ⊗ ΦG)) = Tr(π

(d)
∗ (ΨF ⊗ Can))× Tr(π

(d)
∗ (ΦF ⊗ΨG0))

Since Tr(π
(d)
∗ (ΨF⊗can)) = Tr(π

(d)
∗ (ΨF ))rG , we are reduced to showing that Tr(π

(d)
∗ (ΦF⊗ΨG0)) =

〈G0,F〉Π(d,−) (ΨG0 ,ΦZ) and the latter is independent of the choice of ΦZ . We fix an isomorphism

P : F → OZ in Π(K(d)(X,−)). The result will follow if we show that the following diagram is
commutative:

〈G0,F〉Π(d,−)

〈Id,ΦF 〉Π(d,−)//

〈Id,P 〉
��

a

〈G0, ϕ∗F〉Π(d,−)

〈Id,ϕ∗P 〉
��

proj // 〈ϕ∗G0,F〉Π(d,−)

〈ΨG0
,Id〉

//

〈Id,P 〉
��

〈G0,F〉Π(d,−)

〈Id,P 〉
��

〈G0, [OZ ]〉Π(d,−) 〈Id,ΦZ〉
// 〈G0, ϕ∗[OZ ]〉Π(d,−) proj

// 〈ϕ∗(L, 0), [OZ ]〉Π(d,−) 〈ΨG0
,Id〉
// 〈G0, [OZ ]〉Π(d,−)

To check this, we only need to show the commutativity for the square “a”. Since G0 has rank
zero, there exists C ∈ ΠK(1)(X) such that C ∼= G0. Then the diagram above is isomorphic to

〈C,F〉Π(d,−)

〈Id,ΦF 〉 //

〈Id,P 〉
��

〈C,ϕ∗F〉Π(d,−)

〈Id,ϕ∗P 〉
��

〈C, [OZ ]〉Π(d,−) 〈Id,ΦZ〉
// 〈C,ϕ∗[OZ ]〉Π(d,−) .

All the morphisms in this diagram are isomorphisms, and so it is enough to show that the path
P−1 ◦Φ−1

Z ◦ϕ∗P ◦Φ ∈ π1K(d)(X,−) tensored with C is homotopic to the identity. In particular,

we just need to show that it maps to the identity when viewed as an element of Π(K(d)(X,−)).
But, this is precisely the content of Lemma 3.7.1. �
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Corollary 3.9.4. Suppose f : F → F ∈ Π(K(d)(X,−)) and g : G → G ∈ Π(K(X)). Then

〈G,F〉Π(d,−)(g, f) = Tr(π
(d)
∗ (f)|π(d)

∗ (F))rG 〈G,F〉Π(d,−)(g, Id).

Here, π
(d)
∗ (f) and π

(d)
∗ (F) are the images under the natural map Π(K(d)(X,−))

π∗−→ PicZ(k).

Proof. Note that if ϕ = Id : X → X, then a correspondence on F (resp. G) just amounts to
giving an endomorphism of F (resp. G). The result is then a direct consequence of the previous
proposition. �

4. Localization formula for holonomic DX-modules

In this section, we prove our main results on the global epsilon factors of tensor products of
holonomic DX -modules and flat connections. In the following, π : X → Spec(k) is a smooth
projective variety over a field of characteristic zero.

4.1. (The main theorem) Let F be a holonomic DX -module. We set

εdR(X,F) := det
(
RΓdR(X,F)

)
∈ PicZ(k).

Below, we consider the following variant of the microlocalization map of Corollary 2.7.2:

CCK : Khol(DX)
ε−→ K(d)(T ∗X)→ K(d)(T ∗X,−)

where the second map is the natural augmentation map. Recall that we have defined a twisted
pull-back map:

σ+ : K(T ∗X)→ K(X).

In a completely analogous manner we can define the twisted pull-backs:

σ+ : K(d)(T ∗X)
σ∗−→ K(d)(X)

⊗ωX−−−→ K(d)(X),

and

σ+ : K(d)(T ∗X,−)
σ∗−→ K(d)(X,−)

⊗ωX−−−→ K(d)(X,−).

We set CC := σ+ ◦ CCK, and let for∇ : KX(DX) → K(X) denote the morphism induced by
forgetting the DX module structure. Recall, this is well defined since any DX -module with
singular support in the zero section is coherent as an OX -module. The following is the main
result of this section.

Theorem 4.1.1. The following diagram commutes up to homotopy equivalence:

KX(DX) ∧Khol(DX)
⊗ //

for∇∧CC
��

Khol(DX)

RΓdR

��
K(X) ∧K(d)(X,−)

〈−,−〉K(d,−)

// K(k).

Proof. We only need to show that the following two diagrams commute:

KX(DX) ∧Khol(DX)
⊗ //

for∇∧CC
��

K(DX)

σ+◦gr
��

K(X) ∧K(d)(X,−) ⊗
// K(X),

K(DX)
σ+◦gr //

RΓdR

��

K(X)

f∗zzuuu
uu
uu
uu

K(k).
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The commutativity of the right hand diagram follows from Proposition 2.7.4. Therefore, it is
enough to verify that the diagram on the left is commutative. The bottom horizontal in this
diagram is by definition the composition:

K(X) ∧K(d)(X,−)
⊗−→ K(d)(X,−)→ K(0)(X,−)→ K(X).

Since σ+ commutes with ⊗ and augmentation, we are reduced to showing that the following
diagram commutes:

KX(DX) ∧Khol(DX)
⊗ //

for∇∧CCK

��

K(DX)

σ∗◦gr
��

K(X) ∧K(d)(X,−) ⊗
// K(X),

Note that for∇ is homotopic to σ∗ ◦ gr : KX(DX) → KX(T ∗X). Therefore, by 3.2.1 and
3.2.2, we are reduced to showing that the following diagram commutes:

KX(DX) ∧Khol(DX)
⊗ //

gr∧ε
��

K(DX)

gr

��
KX(T ∗X) ∧K(d)(T ∗X) ⊗

// K(T ∗X)

By definition, this commutative diagram factors as:

KX(DX) ∧Khol(DX) //

gr∧ε
��

KX(DX) ∧K(DX)
⊗ //

gr∧gr
��

K(DX)

gr

��
KX(T ∗X) ∧K(d)(T ∗X) // KX(T ∗X) ∧K(T ∗X) ⊗

// K(T ∗X)

The left square in this diagram commutes by Remark 2.7.3, and the right square commutes
by Lemma 2.8.1. �

The theorem has the following direct consequence for the pairing 〈−,−〉Π(d,−). Namely, let

F be a holonomic DX -modules, and G a vector bundle with connection. Then, forgetting
the connection, G gives rise to a natural object det(G) ∈ Π(K(X)). On the other hand, F
gives rise to an object of the Picard groupoid associated to Khol(DX), and therefore, an object

of Π(K(d)(X,−)) via the morphism CC. We denote the corresponding object by CC(F) ∈
Π(K(d)(X,−)). Applying the pairing

〈−,−〉(d) : Π(K(X)) ∧K(d)(X,−)→ PicZ(k)

to det(G) and CC(F) gives rise to an object 〈det(G),CC(F)〉 ∈ PicZ(k).

Corollary 4.1.2. There is a natural (in F and G) isomorphism in PicZ(k):

εdR(X,G ⊗ F) ∼= 〈det(G),CC(F)〉.

We now apply the previous corollary to compute traces of correspondences and endomor-
phisms. Let F denote a holonomic DX -module and G a flat connection as above, and fix an
automorphism ϕ : X → X.



22 TOMOYUKI ABE AND DEEPAM PATEL

Definition 4.1.3. A correspondence ΦF on F is an isomorphism ΦF : F → ϕ∗F of DX -
modules. Since ϕ is assumed to be an automorphism, this is equivalent to giving an isomorphism
ΨF : ϕ∗F → F .

We fix correspondences ΦF and ΨG on F and G. Note that if ϕ = id is the identity, then
a correspondence is simply an automorphism. Moreover, just as in 3.9, one has an induced
correspondence

ΦF ⊗ΨG : F ⊗ G → ϕ∗(F ⊗ G).

It follows that one has an induced quasi-isomorphism:

RΓ(ΦF ⊗ΨG) : RΓdR(X,F ⊗ G)→ RΓdR(X,F ⊗ G).

We let εdR(X,F⊗G; ΦF⊗ΨG) := Tr(ΦF⊗ΨG : det(RΓdR(X,F⊗G)) ∈ k×. If ϕ is the identity, we
have simply automorphisms f : F → F and g : G → G (as DX -modules). In this case we denote
the corresponding epsilon factor by εdR(X,F⊗G; f⊗g) := Tr(f⊗g : det(RΓdR(X,F⊗G)) ∈ k×.
In the following, we fix a lift SS(F) ∈ Z0(X) of [CC(F)] ∈ CH0(X). Moreover, we fix an object

(as in 3.9), also denote by SS(F), of Π(K(d)(X)) whose image in Π(K(d)(X,−)) is isomorphic to
CC(F) and finally G0 as in 3.9.3 (corresponding to det(G) ∈ Π(K(X))). By Proposition 3.9.3,
this data allows us to define 〈G0,SS(F)〉(ΨG)Π

(d,−) ∈ k
×.

Theorem 4.1.4. With notation as above:

(i) One has

εdR(X,F ⊗ G; ΦF ⊗ΨG) = εdR(X,F ; ΦF )rG × 〈G0, SS(F)〉(ΨG)Π
(d,−)

(ii) In the setting of endomorphisms (i.e. ϕ = id), we have

εdR(X,F ⊗ G; f ⊗ g) = εdR(X,F ; f)rG × 〈det(G), SS(F)〉(g)

Proof. The first equality follows directly from the theorem and Proposition 3.9.3. For the second
statement, we note that in the setting of endomorphisms one has by Proposition 3.9.4:

εdR(X,F ⊗ G; f ⊗ g) = εdR(X,F ; f)rG × 〈det(G),SS(F)〉Π(d,−)(g, Id)

On the other hand, the latter is

〈det(G),SS(F)〉Π(d,−)(g, Id) = 〈det(G), SS(F)〉Π(d)(g, Id) = 〈det(G),SS(F)〉(g)

by Corollary 3.5.1. �

Remark 4.1.5. We note that CC(F) ∈ CHd(X) is precisely the pull back of the characteristic
cycle of F under the zero section σ∗ : CHd(T ∗X)→ CHd(X).

4.2. (A formula for the local pairing) Let G ∈ ΠK(X), and ΨG : ϕ∗G → G be a correspondence
in ΠK(X). As before, we shall let G0 denote the associated rank 0 object and ΨG0 the induced
correspondence. Recall, the choice of such G0 is unique up to isomorphism. Assume given a
cycle z ∈ CHd(X) such that z = ϕ∗(z). We take an object OZ ∈ ΠK(d)(X,−) which corresponds

to z via the isomorphism π0K(d)(X,−) ∼= CH0(X), and take a correspondence P : OZ → ϕ∗OZ
as well. Since z = ϕ∗(z), such a correspondence must exist (though it may not be unique).

In this setting, we have seen that in the proof of Proposition 3.9.3 that

〈G0,OZ〉Π(d,−) (ΨG0 , P ) ∈ k×
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is independent of the choice of OZ and P . When z is represented by a z0 ∈ Zd(X) such that
ϕ∗(z0) = z0, we may take P such that the description of the pair is especially simple. For
simplicity, we assume that z0 is a effective cycle. In the general case, we can proceed by writing
it as a difference of two effective cycles. In this case, let W be the underlying reduced scheme of
z0 in X. Note that W is a smooth scheme of dimension 0. Since, by assumption, ϕ∗(z0) = z0,
there exists an endomorphism ϕW of W such that

W //� _

i
��

ϕW // W� _

i
��

X ϕ
// X

is commutative. Since z0 is an effective cycle, we may write z0 =
∑

w∈|W | nw · [w] where nw > 0.

We set Oz0 :=
⊕

w∈|W |O⊕nw
w . The endomorphism ϕW yields a correspondence P : Oz0 → ϕ∗Oz0

We can pull back the correspondence ϕ∗A→ A by i, and get a correspondence i∗Ψ: ϕ∗W (i∗A)→
i∗A. One can check that

〈A, z〉 (Ψ, P ) = Tr(RΓ(i∗Ψ)).

4.3. (Elementary proof of localization formula for endomorphisms) In this section, we give an
elementary proof of the main theorem when the correspondence is merely automorphisms. While
the proof below is elementary, it doesn’t seem to generalize to the setting of correspondences
(unlike the K-theoretic approach of the previous sections). We only give an outline of the proof
below, and leave the details to the reader.

We begin by recalling the statement for the reader’s convenience. Let X denotes a smooth
projective variety over an algebraically closed field k of characteristic zero. Let G denote a
flat connection on X, and F a holonomic DX -module. Let f (resp. g) denote a DX -module
automorphism of F (resp. G). Given a cycle S(F) ∈ CH0(X) representing the pull-back (by the
zero section) of the characteristic cycle of F , we have defined the trace 〈det(G), S(F)〉(g) ∈ k×.
Note that S(F) = [CC(F)] using the previous notation.

Theorem 4.3.1. With notation as above:

εdR(X,F ⊗ G, f ⊗ g) = εdR(X,F , f)rG × 〈det(G)(g),S(F)〉.

Proof. Suppose 0 ⊂ F1 ⊂ · · · ⊂ Fk = F is a finite filtration of F and that f is an endomor-
phism which preserves this filtration. Since both sides of the formula are compatible with exact
sequences (i.e. are multiplicative), we are reduced to showing the validity of the given formula
for F replaced by gri(F) with the morphism induced by f . A similar assertion holds for G.
In particular, we can assume that F is a simple holonomic DX -module. Then, f is given by
multiplication by a scalar. A similar assertion holds for G and g. Suppose f = α ∈ k× and
g = β ∈ k×. Then the left hand side of the formula is given by (αβ)χ(F⊗G). The right hand side

is given by αχ(F)rGβrGχ(F). Therefore, we are reduced to showing that χ(F⊗G) = χ(F)rG . This
follows from a direct computation or by the Dubson-Kashiwara formula once one notes that the
associated graded (with respect to a good filtration) commutes with the tensor product since G
is OX -coherent. �
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MA, 1990.

[11] N. Umezaki, E. Yang, and Y. Zhao. Characteristic class and the ε-factor of an étale sheaf. preprint.

Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
E-mail address: tomoyuki.abe@ipmu.jp

Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN
47907, U.S.A.

E-mail address: patel471@purdue.edu


