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Abstract. Let Y be a smooth projective variety over C, and X be a smooth hypersurface
in Y . We prove that the natural restriction map on Chow groups of codimension two cycles
is an isomorphism when restricted to the torsion subgroups provided dimY ě 5. We prove
an analogous statement for a very general hypersurface X Ă P4 of degree ě 5. In the more
general setting of a very general hypersurface X of sufficiently high degree in a fixed smooth
projective four-fold Y , under some additional hypothesis, we prove that the restriction map is
an isomorphism on `-primary torsion for almost all primes `. As a consequence, we obtain a
weak Lefschetz theorem for torsion in the Griffiths groups of codimension 2 cycles, and prove
the injectivity of the Abel-Jacobi map when restricted to torsion in this Griffiths group, thereby
providing a partial answer to a question of Nori.
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1. Introduction

1.1. Motivation. We begin by recalling the Lefschetz conjectures for Chow groups. Below, we
work over the field of complex numbers.

Conjecture 1.1 (Weak Lefschetz conjecture). Let Y be a smooth, projective variety of dimen-
sion m ` 1 and X be a smooth, ample divisor in Y . The restriction map of rational Chow
groups

CHipY qQ Ñ CHipXqQ

is an isomorphism for i ă m{2, and a monomorphism for i “ m{2.

Conjecture 1.2 (Noether-Lefschetz conjecture). Let Y be a smooth, projective variety of di-
mension m` 1, and X be a very general, sufficiently ample divisor in Y . Then

CHipY qQ Ñ CHipXqQ

is an isomorphism for i ă m, and a monomorphism for i “ m.

Conjecture 1.1 is a consequence of the Bloch-Beilinson conjectures (see [14] for e.g.), and Con-
jecture 1.2, which is due to Nori (see [13], Conjecture 7.2.5), similarly follows from the Bloch-
Beilinson conjectures and Nori’s connectivity theorem (see op. cit.).

On the other hand, Totaro (see [19]) has conjectured that the isomorphisms in Conjecture 1.2
should hold integrally. In particular, Totaro’s conjecture implies that the natural restriction
map on torsion in Chow groups

CHipY qtors Ñ CHipXqtors

is an isomorphism for i ă m.

1.2. Statement of results. The results in this note mark some progress for codimension 2 cy-
cles. More precisely, we prove the following Lefschetz theorems for torsion cycles in codimension
two.

Theorem 1.3. Let Y be a smooth projective variety of dimension at least 4 and X Ă Y be a
smooth, ample divisor. Then the natural restriction map

CH2pY qtors Ñ CH2pXqtors

is an isomorphism for dimY ě 5, and an injection for dimY “ 4.

Remark 1. Assume now that in the theorem above, Y is defined over a separably closed field of
characteristic p ą 0. Then the proof of the above theorem yields that the restriction map above
is an isomorphism on prime - to - p torsion.

For hypersurfaces in P4, we prove an analogous statement:

Theorem 1.4. For a very general hypersurface X Ă P4 of degree ě 5, one has

CH2pXqtors “ 0.

This immediately implies the following obvious
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Corollary 1.5. For a very general hypersurface X Ă P4 of degree ě 5, one has

Grif2pXqtors “ 0.

Here Grif2pXq is the Griffiths group of codimension 2 cycles.

The above Corollary answers in the affirmative the case m “ 2 of the following question due to
Chad Schoen ([16], 3.4.4):

For a sufficiently general hypersurface X Ă P2m, is GrifmpXqtors “ 0?

More generally, using the methods of the proof of Theorem 1.4, we prove a Noether-Lefschetz
theorem for torsion cycles in codimension 2.

Theorem 1.6. Let Y be a smooth projective variety of dimension at least 4 and OY p1q be a
sufficiently ample line bundle on Y . Assume that the universal family X Ă Y ˆ S, where S is
the parameter space of smooth members of the linear system |OY p1q|, satisfies hypothesis (H)
(see §4.4 for details). Then, for a very general member X in the linear system |OY p1q|, the
restriction map CH2pY q Ñ CH2pXq is an isomorphism on p-torsion for almost all primes p.

Theorem 1.7. Let Y be a smooth projective variety of dimension at least 5, and X be a general
ample hyperplane section in Y . Then the restriction map

Grif2pY qtors Ñ Grif2pXqtors

is an isomorphism.

Remark 2. We note that hypothesis (H) is not so easy to verify. However, results of Illusie ([8])
give several examples (see §4 for more details). In particular, global complete intersections in
PN satisfy these hypotheses (4.13).

1.3. Method of proof. The basic ingredient in the proofs of Theorems 1.3 and 1.6 is the
identification of `-primary torsion in CH2pXq with level 1 coniveau of H3

etpX,Q`{Z`q following
the work of Merkurjev-Suslin [11], see Theorem 2.5. The theorems then are consequences of
the strictness of the coniveau filtration. However, the techniques for proving these strictness
statements (Theorems 1.3 and 1.6) are very different. The former is an easy consequence of an
open version of the usual weak Lefschetz theorem combined with a Bertini argument. However,
for the latter we use reduction mod p and a theorem of Bloch-Esnault (see [3]) which states that
under some hypothesis, coniveau level 1 is a strict subset of the whole cohomology group. A
monodromy argument then allows one to conclude that this must be zero.

We briefly describe the contents of the following sections. In §2, we recall some background ma-
terial on the coniveau filtration and its relation to torsion in codimension two Chow groups. In
§3, we give a proof of Theorem 1.3, which follows from a simple application of a Bertini theorem
and an open version of the weak Lefschetz theorem. In §4, we give a proof of Theorems 1.4 and
1.6 which, as mentioned above, follow from a reduction mod p argument and an application of
a theorem of Bloch-Esnault. Finally, in §5 we give a proof of Theorem 1.7.
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2. Preliminaries

2.1. Coniveau Filtration. Let X denote a scheme of finite type over a fixed field k Ă C. Then
the coniveau filtration on the singular cohomology HipX,Aq of X (i.e. singular cohomology of
the base change XC) with coefficients in an abelian group A is defined as follows:

NjHipX,Aq :“
ř

codimZěj kerrHipX,Aq Ñ HipXzZ,Aqs

–
ř

codimZěj ImagerHi´2jp rZ,Aq Ñ HipX,Aqs.

Here Z̃ Ñ Z is a desingularization. This gives rise to the descending coniveau filtration

N0HipX,Aq “ HipX,Aq Ą N1HipX,Aq Ą N2HipX,Aq Ą N3HipX,Aq Ą ¨ ¨ ¨ .

Remark 3. One has an analogously defined coniveau filtration for the étale cohomology of X
with coefficients in any torsion abelian group A with torsion prime to the characteristic of k.

We shall think of HipX,Aq as a filtered A-module with the filtration given by coniveau. One
has the following basic functoriality result:

Any morphism f : X Ñ Y of smooth projective varieties induces a filtered morphism on coho-
mology. In particular, one has

fpNjHipY,Aqq Ă NjHipY,Aq.

One has a similar statement for étale cohomlogy. In the setting of singular cohomology, this is
proved in [2]. The same proof works also for étale cohomology. On the other hand, recall that
the coniveau filtration can also be defined as the filtration induced by the coniveau spectral se-
quence. Since the coniveau spectral sequence is contravariantly functorial in f , so is the resulting
filtration on its abutment. In particular, the result holds for any Bloch-Ogus cohomology theory.
We also have the following standard compatibility of coniveau with respect to the comparison
isomorphism.

Lemma 2.1. Suppose k Ă C is algebraically closed. For A “ Z{`rZ, the comparison isomor-
phism between étale cohomology and singular cohomology

c : Hi
etpX,Aq Ñ HipX,Aq,

is a morphism of filtered modules.
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Proof. First note that étale cohomology and the coniveau filtratrion are invariant under exten-
sions of algebraically closed fields ([1], Expose XX, 2.2). Hence, we may assume that k “ C. The
result now follows from the fact that the comparison isomorphism is functorial. In particular,
the following diagram is commutative:

Hi
etpX,Aq //

c
��

Hi
etpXzZ,Aq

c
��

HipX,Aq // HipXzZ,Aq.

�

Finally, we recall that the integral `-adic cohomology (with Tate twists) of X is defined as the
inverse limit

Hi
etpX,Z`pnqq “ lim

ÐÝ
m

Hi
etpX,Z{`mZpnqq

and the rational `-adic cohomology of X is

Hi
etpX,Q`pnqq :“ Hi

etpX,Z`pnqq bZ Q.

In this setting, we define the coniveau filtration as the inverse limit of the previously defined
coniveau filtration:

NjHi
etpX,Z`pnqq :“ lim

ÐÝ
m

NjHi
etpX,Z{`mZpnqq and NjHi

etpX,Q`pnqq :“ NjHi
etpX,Z`pnqq bZ Q.

Note that one could alternatively define the coniveau filtration on `-adic cohomology by repeating
the definition of the coniveau filtration for Hi

etpX,Z{`mZq. In particular, this is the filtration
one would get from the Bloch-Ogus machinery. However, this is not the same as the one defined
above for `-adic cohmology (see [17]). On the other hand, it is the inverse limit filtration which
is naturally related to the torsion in codimension two Chow groups.

2.2. Strictness of coniveau and GHC. In this paragraph, we briefly recall the generalized
Hodge conjecture and its relation to coniveau.

Let X denote a smooth projective variety over C. Recall that the cohomology groups of X carry
a pure Hodge structure given by the Hodge decomposition

HipX,Cq – ‘p`q“iHqpX,Ωp
Xq,

and one has the usual Hodge filtration defined by FpHipX,Cq :“ ‘p1ěpH
i´p1

pX,Ωp1

Xq. More-

over, it is easy to see that NjHipX,Qq Ă FjHipX,Cq X HipX,Qq. However, as pointed out by
Grothendieck (see [7]), while the LHS is always a pure Hodge structure, the RHS is in general
not a Hodge structure, and hence the inclusion need not be an equality in general. This led to
his formulation of the generalized Hodge conjecture:

Conjecture 2.2 (Generalized Hodge conjecture). With notation as above,

GHCpj, i,Xq : NjHipX,Qq is the largest sub Hodge structure of FjHipX,Cq XHipX,Qq.
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We refer to [10] for a survey of results related to the GHC.

Recall, a morphism of filtered vector spaces f : pV,N¨q Ñ pW,N¨q is strict if

fpNjVq “ NjW X Impfq.

As an immediate corollary of Conjecture 2.2 one obtains the following:

Conjecture 2.3. Let f : X Ñ Y be a morphism of smooth projective complex algebraic
varieties. Then the induced morphism of coniveau filtered Q-vector spaces

f : HipY,Qq Ñ HipX,Qq
is a strict morphism.

Suppose now that X ãÑ Y is a smooth ample divisor. Then the weak Lefschetz Theorem
combined with Conjecture 2.3 implies the following weak Lefschetz conjecture for coniveau:

Conjecture 2.4. Let X ãÑ Y be as above. Then the induced map

NjHipY,Qq Ñ NjHipX,Qq
is an isomorphism for all j and i ă dimpXq.

A proof of this conjecture is given in the next section.

2.3. Bloch-Quillen theory, Merkurjev-Suslin theorem and a result of Colliot-Thélène–
Raskind. We recall a result relating coniveau level one with torsion in CH2 (see [4], Prop 3.1).
Let X denote a smooth proper variety over a separably closed field k. We set

HipX,Q`{Z`pnqq “ lim
ÝÑ
m

HipX,Z{`mpnqq, and

NjHipX,Q`{Z`pnqq :“ lim
ÝÑ
m

NjHipX,Z{`mpnqq.

Theorem 2.5. For X{k a smooth, proper, connected variety over a separably closed field, and
` prime, ` ‰ char.k, there is a natural isomorphism

N1H3pX,Q`{Z`p2qq – CH2pXqt`u.

Here CH2pXqt`u :“
Ť

`mCH2pXq`n´tors is the `-primary subgroup.

2.4. A Bertini Theorem. The following Bertini theorem will be useful in the following.

Theorem 2.6 ([2], Theorem 1). Let X ãÑ Pn denote a smooth projective variety over an infinite
field k. Let Z ãÑ X denote a closed subvariety and IZ,Pn denote the ideal sheaf of Z in Pn. Let
a be an integer such that IZ,Pnpaq is generated by global sections. Then a general hyperplane
section of X of degree a` 1 is smooth away from Z. In particular, the intersection of a general
element of |IZ,Pnpa` 1q| with X is smooth away from Z and does not contain X.

We record the following easy consequence for future reference:

Corollary 2.7. Let Y Ă PN be a smooth projective variety, and let X Ă Y denote a smooth
member of |OY p1q|. Let Z Ă X be a closed subvariety and a be the smallest integer such that
IZ,Pnpaq is generated by global sections. Then a general hypersurface V in the linear system
|IZ,Pnpa` 1q| intersects both X and Y smoothly away from Z.
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Remark 4. Let X, Y , and Z be as above such that codimension of Z in X is p. A repeated
application of the Bertini theorem above shows that there exist hypersurfaces V1, . . . , Vp such
that each Vi contains Z, and the intersection of the Vi has codimension p in X, and p` 1 in Y .

3. Lefschetz type results for coniveau

Let pY,OY p1qq be a smooth complex projective variety and X a smooth member of the linear
system |OY p1q|.

Theorem 3.1. Let m :“ dimpXq. Then the natural restriction map

N1HipY,Zq Ñ N1HipX,Zq

is an isomorphism for all i ă dimpXq and an injection for i “ dimpXq.

Proof. First, note that functoriality of coniveau and the usual weak Lefschetz implies that the
map is injective in the desired range. Suppose now that i ă dimpXq and let α P N1HipX,Zq.
Then, again by the usual weak Lefschetz, there exists a unique lift α̃ P HipY,Zq of α. Therefore,
we must show that α̃ P N1HipY,Zq. By definition of N1, there is a closed codimension 1 subvariety
Z Ă X such that α maps to zero in HipXzZ,Zq. By Corollary 2.7, for a " 0, we may choose
V in |H0pY, IZpaqq| such that W :“ V XX is proper and contains Z. Since W Ą Z, one has a
factorization:

HipX,Zq Ñ HipXzZ,Zq Ñ HipXzW,Zq.
It follows that α maps to zero in HipXzW,Zq. On the other hand, Lemma 3.2 below implies
that we have a commutative diagram

HipY,Zq //

��

HipX,Zq

��

HipY zV,Zq // HipXzW,Zq ,

where the horizontal maps are isomorphisms. It follows that α̃ is in the kernel of the left vertical,
and hence lies in coniveau level one. �

The following lemma is probably well known to the experts and follows easily from Artin van-
ishing. We provide a proof due to the lack of an appropriate reference.

Lemma 3.2. Let Y and X be as before, and V P |OY paq| as above so that in particular, V
intersects X properly. Then the natural restriction map

HipY zV,Zq Ñ HipXzV,Zq

is an isomorphism for all i ă dimpXq and injective when i “ dimpXq.

Proof. If V “ H, this is the usual weak Lefschetz theorem. Moreover, the same proof goes
through verbatim in the setting of the proposition. Namely, consider the long exact sequence in
cohomology:

¨ ¨ ¨ Ñ Hi
cppY zXqzV,Zq Ñ HipY zV,Zq Ñ HipXzV,Zq Ñ ¨ ¨ ¨ .

Since pY zXqzV is a smooth affine variety, the left-most group in the above exact sequence
vanishes for all i ă dimpY q. This follows from usual Artin vanishing, and duality. �
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Remark 5. By Remark 4, the same proof goes through to show more generally that an element
in coniveau level j lifts to one in coniveau level j. In particular, Theorem 3.1 holds if we take
coniveau level j instead of level 1. However, it is only the level 1 coniveau that plays a role in
the applications to torsion codimension two cycles discussed below.

Corollary 3.3. Let Y be a smooth projective variety over a separably closed field k, X P |OY p1q|
as before, and ` prime to char(k). Then the natural restriction map

NjHipY,Q`{Z`pnqq Ñ NjHipX,Q`{Z`pnqq

is an isomorphism for all i ă dimpXq and injective when i “ dimpXq.

Proof. We first note that Theorem 3.1 and Lemma 3.2 (with same proof) hold for Y over a
separably closed field k if one considers instead étale cohomology with coefficients in a torsion
ring A such that charpkq is invertible in A. The result now follows by taking direct limits and
Remark 5. �

Corollary 3.4. Let Y be a smooth projective variety over a separably closed field k of character-
istic zero, and X P |OY p1q| as before. Suppose furthermore that dimpY q ě 4. Then the natural
restriction map

CH2pY qtors Ñ CH2pXqtors

is an isomorphism if dimpY q ě 5 and an injection if dimpY q “ 4. If charpkq “ ` ą 0, then one
has an analogous statement on prime to ` torsion.

Proof. This is a consequence of the previous Corollary and Theorem 2.5. �

4. Noether-Lefschetz type results for strictness of Coniveau

In this section, we investigate Noether-Lefschetz type theorems for strictness of coniveau and
its application to torsion codimension 2 cycles. Much of this section is based on [18]. We begin
by recalling some background which will be used in the following subsection.

4.1. Ordinary Reduction. Let k be a perfect field of characteristic p. Then a smooth proper
variety X over k is ordinary if HqpX,BΩr

X{kq “ 0 for all q and r. Here BΩr
X{k Ă Ωr

X{k de-

notes the exact r-forms. More generally, let π : X Ñ S denote a smooth proper morphism
of schemes over k. Then X is ordinary over S if Rqπ˚BΩr

X{S “ 0 for all q and r. By Illusie

([9], 1.2), being ordinary is stable under base change. Moreover, the set of points where the
fibers Xs are ordinary form an open subset of S. Finally, the condition can be checked stalk-wise.

It may happen that the open set U above is the empty set. However, the main results of
([9]) show that there exist hypersurfaces in Pn which are ordinary. In particular, the generic
hypersuface in projective space is ordinary. More generally, Illusie proves the following result.

Theorem 4.1. Let Y be a smooth projective variety over k such that every complete intersec-
tion of Y of multidegree p1, . . . , 1q is ordinary. Then the general hypersurface of multi-degree
pa1, . . . , adq is ordinary for all ai.

The hypothesis in the Theorem is not so easy to check in practice. However, they are trivially
verified for Y “ Pn, as well as for quadrics.
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4.2. Coniveau level one theorems. Let R denote a complete discrete valuation ring with a
perfect residue field k of characteristic p, and fraction field K of characteristic 0. The following
theorem of Bloch-Esnault will be used in the following to show the triviality of various coniveau
level one pieces.

Theorem 4.2 ([3],Theorem 1.2). Let X be a smooth proper scheme over S “ SpecpRq. Suppose
that Xk (the special fiber) is ordinary, the Hodge groups HspX,Ωt

X{Sq are torsion free for all t

and s, and that ΓpXk,Ω
m
Xk
q ‰ 0. Then

N1HmpXK̄ ,Z{pZq ‰ HmpXK̄ ,Z{pZq.

Remark 6. In loc. cit., the theorem is stated with the hypothesis that the crystalline cohomology
(rather than the Hodge) groups are torsion free. However, note that the current hypotheses imply
that the crystalline cohomology is torsion free.

We now prove a slightly general version of the previous theorem in dimension 4. More precisely,
suppose Y Ñ SpecpRq is smooth projective with (relatively) ample bundle OY p1q and that X
is a smooth element of the associated (relative) linear system. In particular, XK is a smooth
hyperplane section of YK . Finally, we shall assume dimpYKq “ 4. In this setting, we let
H3
evpXK̄ ,Z{pZq denote the vanishing cycles cohomology, and

N1H3
evpXK̄ ,Z{pZq :“ H3

evpXK̄ ,Z{pZq XN1H3pXK̄ ,Z{pZq.
Then we have the following analog of the theorem of Bloch-Esnault.

Theorem 4.3. With notation as above, suppose furthermore:

(i) X has ordinary good reduction.
(ii) Either 3 ă pp ´ 1q{gcdpe, p ´ 1q (where e is the absolute ramification degree of R) or

that the Hodge groups of X relative to S have no torsion.
(iii) Suppose that H0pYk,Ω

3
Yk
q Ñ H0pXk,Ω

3
Xk
q is not surjective.

(iv) The hard Lefschetz map H3pYK̄ ,Z{pZq Ñ H5pYK̄ ,Z{pZq is an isomorphism.

Then
N1H3

evpXK̄ ,Z{pZq ‰ H3
evpXK̄ ,Z{pZq.

Proof. Since the proof follows closely the proof of Bloch-Esnault ([3], Theorem 1.2), we give an
outline and refer to loc. cit. for some of the details. Let iX : Xk ãÑ X (resp. iY : Yk ãÑ Y )
denote the natural closed embedding and similarly jX : XK ãÑ X (resp. jY : YK ãÑ Y ) denote
the corresponding open immersion. In the following, we write bars over various objects to denote
their base extension to the algebraic closure. Then one has the following Bloch-Kato spectral
sequence:

Es,t2 :“ HspYk̄, pīY
˚Rtj̄Y ˚pZ{pZptqqqp´tqq +3 Hs`tpYK̄ ,Z{pZq

One has a similar spectral sequence for Xk̄ and XK̄ . Now under the assumption of ordinarity
and (ii), one has a diagram:

H3pXK̄ ,Z{pZq� H0pXk̄, pīX
˚R3j̄X˚pZ{pZp3qqqp´3qq ãÑ H0pXk̄,Ω

3
Xk̄
p´3qq.

We note that such a diagram always exists (in particular also for YK̄). However, here the
hypothesis (ii) guarantees that the above spectral sequence degenerates at E2, which gives that
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the left map in the above diagram is surjective. The injection on the right is a consequence of
ordinarity. Moreover, under this assumption, the injection on the right becomes an isomorphism
if we tensor the middle term with k̄. We denote the compositions in the above diagram by αX
(resp. αY ). This gives rise to a commutative diagram:

(4.2.3) H3pYK̄ ,Z{pZq //

αY

��

H3pXK̄ ,Z{pZq

αX

��

H0pYk̄,Ω
3
Yk̄
p´3qq //

��

H0pXk̄,Ω
3
Xk̄
p´3qq

��

Ω3
LY
p´3q // Ω3

LX
p´3q

Here LX is the separable closure of the function field of Xk̄ and similarly for LY . The horizontal
maps are just the restriction maps. It follows from loc. cit. 1.2.7, that one has a commutative
diagram such that the right vertical is injective:

H3pXK̄ ,Z{pZq
αX //

βX
��

H0pXk̄,Ω
3
Xk̄
p´3qq

γ

��

H3pKpXK̄q,Z{pZq // Ω3
LX
p´3q

It follows that if βXpH
3
evpXK̄ ,Z{pZqq “ 0 then αXpH

3
evpXK̄ ,Z{pZqq “ 0. Moreover, the former

is equivalent to H3
evpXK̄ ,Z{pZq “ N1H3

evpXK̄ ,Z{pZq. Therefore, we are reduced to showing
that αXpH

3
evpXK̄ ,Z{pZqq ‰ 0. By assumption (iv), one has H3pXK̄ ,Z{pZq “ H3pYK̄ ,Z{pZq `

H3
evpXK̄ ,Z{pZq. Therefore, if αXpH

3
evpXK̄ ,Z{pZqq “ 0 then the middle horizontal in (4.2.3)

must be surjective (since αX is surjective after tensoring with k̄). On the other hand, the
middle arrow is not surjective by hypothesis (iii). �

Remark 7. Note that, in the proof, we do not require any information on αY except its existence.
And, in particular, one only needs the assumptions (i) and (ii) of the Theorem for X.

Remark 8. In practice, hypothesis (iv) of the theorem is rare. However, it is true for principally
polarized abelian varieties. On the other hand, we shall consider varieties over C, and then
spread them out over number fields. In that case, the hypothesis will hold for the reduction
modulo p for almost all primes p.

4.3. The case Y “ P4. In this subsection, we prove a Noether-Lefschetz type theorem for
torsion codimension two cycles on a very general hypersurface X Ă P4

C of high enough degree.

Theorem 4.4. Let X be a very general degree d hypersurface in P4
C. Then for d ě 5, one has

CH2pXqtors “ 0.

The previous theorem will follow from the following theorem. Before stating it, we set-up some
notation. Let X Ñ S denote the universal family of (smooth) hypersurfaces of degree d in
P4
C, where S is the parameter space of such hypersurfaces. In the following, let η denote the
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generic point of S and η̄ the geometric generic point. Note that S is the moduli of smooth
hypersurfaces of degree d, and is defined over Z. Moreover, the universal family X Ñ S is also
defined over Z, and we let X Ñ S denote the universal family over Z. Its base change to C gives
the universal family over C, and similarly its reduction modulo a prime p gives the universal
family of hypersurfaces in P4

Fp
. Finally, note that S is smooth over Z ([6], 1.9).

Theorem 4.5. With notation as above and d ě 5, one has CH2pXη̄qtors “ 0.

We first recall how Theorem 4.5 implies 4.4. This is a standard argument which we reproduce
here for the reader’s convenience (see also [15]). Suppose we have contravariant functors F on
the category of smooth projective varieties over a field k (for any k) with values in abelian groups
equipped with base change maps (along field extensions k Ă k1q. Suppose that F satisfies rigidity.
Namely, for any extension of algebraically closed fields K Ă L, the natural map F pXq Ñ F pXLq

is an isomorphism for any X a smooth projective variety over K. In this case, one has the
following standard result.

Lemma 4.6. Let k “ k̄ be an uncountable field. Suppose we are given a pair pY, V q where Y is
a smooth projective variety over k, and V is a linear system given by a very ample line bundle on
Y . Let S denote the corresponding parameter space and X Ă Y ˆS the corresponding universal
family. Let K denote the the function field of S, K its algebraic closure, and η :“ SpecpKq,
η̄ :“ SpecpKq be the generic and geometric generic points of S respectively. Then the following
are equivalent:
(1) The restriction map F pYη̄q Ñ F pXη̄q is an isomorphism.
(2) For a very general element X of the linear system V , the restriction map F pY q Ñ F pXq is
an isomorphism.

Before we prove the Lemma, we note that an application of the lemma with F p´q “ CH2p´qtors

together with Theorem 4.5 gives a proof of Theorem 4.4. The rigidity for F is a direct conse-
quence of the following result due to Lecomte-Suslin:

Proposition 4.7. (Lecomte-Suslin) Let X denote a smooth proper variety over an algebraically
closed field L, and suppose K is an algebraically closed field extension of L. Then the natural
extension of scalars map

CHppXqtors Ñ CHppXKqtors

is an isomorphism.

Proof of Lemma 4.6. There exists a countable algebraically closed field k0 Ă k such that the
whole data pY, V q can be descended to k0. In particular, there exists a pair pY0, V0q (defined over
k0) whose base change to k is pY, V q. In the following, |V | and |V0| will denote the corresponding
projective spaces. Let t P |V | be a closed point such that t lies in the complement of the
(countable) union of divisors in |V | coming from base change of divisors in |V0|. Any such t
maps to the generic point of |V0| under the projection map |V | Ñ |V0|. Let K0 (resp. K) denote
the function field of |V0| (resp. |V |). (Note that η “ SpecpKq). It follows that K0 ãÑ kptq – k.
Let X0 denote the universal family over |V0|, XK0 :“ pX0qK0 and YK0 :“ pY0qK0 . Then pY,Xtq is
the base change of pYK0 , XK0q. Moreover, pYK ,XKq is obtained via base change from pYK0 , XK0q.
The results now follows by passing to algebraic closures. �
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Proof of Theorem 4.5. In the following, we fix a prime p.
Step 1: Recall, by the remarks above, there is a smooth projective family X Ñ S smooth
over Z whose base change to C gives the universal family. Let ηS denote the generic point of
S and η̄S its geometric generic point. Note that ĞkpηSq ãÑ Ěkpηq is an extension of algebraically
closed fields. Since pXη̄S qη̄ – Xη̄, by Lecomte-Suslin rigidity (4.7) it is enough to show that
CH2pXη̄S qtors “ 0.
Step 2: By the theorem of Colliot-Thélène – Raskind (2.5) it is enough to show that, for all p,
N1H3

etpXη̄S ,Z{pZq “ 0. Since we work over separably closed fields, we drop the Tate twists from
our notation.
Step 3: Again by rigidity, we may localize the universal family to Zppq. Specifically, after
localizing and base change, we may assume S “ SpecpRq where R is a discrete valuation ring of
mixed charactersitic p0, pq. Since ordinarity is an open condition, we can also assume (by further
localizing if necessary) that our universal family over S has good ordinary reduction. Applying
rigidity again, we may assume that our DVR R is a complete DVR with perfect residue field k.
Step 4: Suppose now that we are in the setting of Step 3. Note that X is just a family of
hypersurfaces (with ordinary reduction) in P4 over S and similarly for its reduction over k. We
are reduced to showing that

N1H3
etpXη̄S ,Z{pZq “ 0

where η̄S is the geometric generic point of S and S satisfies the hypothesis of the Theorem 4.2.
Moreover, Xk is ordinary by construction, and (up to localizing S further) the Hodge groups are
all torsion free. Finally, if the degree d ě 5, then H0pXk,Ω3

Xk
q ‰ 0. Therefore,

N1H3
etpXη̄S ,Z{pZq ‰ H3

etpXη̄S ,Z{pZq.

It is now enough to note that the monodromy action on H3
etpXη̄S ,Z{pZq is absolutely irreducible.

This is recalled in the following Lemma. �

The following Lemma is well known. We include it here since we could not find a reference in
the literature.

Lemma 4.8. Let X Ñ S denote the universal hypersurface of degree d in P4
C and η denote the

generic point of S. Then the monodromy action (i.e. the action of Galpη̄{ηqq on H3
etpXη̄,Z{pZq

is absolutely irreducible for all p.

Proof. This is a direct consequence of ([6], 1.11). By loc. cit., for s0 P S, the action of the
fundamental group π1pS, s0q on the singular cohomology H3pXs0 ,Z{pZq is irreducible. Since
the action of π1pS, s0q factors through its profinite completion, we see that the action of the
etale fundamental group πet1 pS, s0q on H3

etpXs0 ,Z{pZq is irreducible. Since S is smooth, we have
that the natural map Galpη̄{ηq Ñ πet1 pS, s0q is surjective. It follows that the induced action of
Galpη̄{ηq on H3pXs0 ,Z{pZq is irreducible. On the other hand, by the smooth and proper base
change theorem one has a Galpη̄{ηq-equivariant isomorphism Hi

etpXs0 ,Z{pZq – Hi
etpXη̄,Z{pZq.

The result now follows. �

Remark 9. The previous lemma also holds in the case of multidegree global complete intersec-
tions. This follows since Deligne’s result ([6], 1.11) also holds in this generality.
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4.4. Some remarks in the general case. In this sub-section, we discuss a partial general-
ization of the results of the last sub-section to the case of hyperplane sections of an arbitrary
fourfold Y . In particular, let Y Ă PNC be a smooth projective 4-fold. Let S denote the parameter
space for smooth elements of |OY paq|, and let π : X Ñ S denote the universal family. By the
usual spreading technique, we can find a smooth projective model Y Ñ T , of relative dimension
4, of Y over T “ SpecpAq where A Ă C is a finitely generated Z-algebra. We have a relatively
ample bundle OY{T p1q on Y whose base change to C gives OY p1q. The relative proj of OY{T paq
gives the parameter space for (relative) degree d hyperplane sections. Let S denote the locus
corresponding to smooth hyperplane sections. Then S is a model of S over T , and the incidence
scheme X ãÑ Y ˆT S is a model for X. In particular, we have a diagram:

X //

πT

##

Y ˆT S

��

S
which gives

X //

π

##

Y ˆC S

��

S

when we base change to C. Moreover, we can assume that all the morphisms in the diagram
are smooth. Finally, we note that up to further shrinking T , we may assume that the Hodge
cohomology sheaves Rqπ˚Ω

p
Y{T as well as Rqπ˚Ω

p
X {T are locally free. Given a closed point

s P SpecpAq, we may pull back our diagram to the residue field kpsq. Note that this is a finite
field. Finally, below we shall assume the following:

(H) The generic member of the family X Ñ S has smooth ordinary specialization at all closed
points in an open sub-set of SpecpAq.

As before, we let η denote the generic point of S and η̄ the geometric generic point.

Theorem 4.9. Suppose Y is as above and that Y has a model satisfying the hypothesis pHq.
The the natural restriction map

N1H3pYη̄,Z{pZq Ñ N1H3pXη̄,Z{pZq
is an isomorphism for almost all p if the degree a is large.

Before proving the Theorem, we state the following two lemmas which will be used in proving
the Theorem.

Lemma 4.10. Let Y be a smooth complex projective variety of dimension n. Then the Hard
Lefschetz map

Hn´1pY,Z{pZq Ñ Hn`1pY,Z{pZq
is an isomorphism for almost all p.

Proof. Note that the integral Hard Lefschetz map on homology

A :“ Hn`1pY,Zq Ñ Hn´1pY,Zq “: B
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has finite torsion kernel and cokernel. Suppose p doesn’t divide the product of the orders of the
kernel and cokernel. Then the induced map

HompB,Z{pZq Ñ HompA,Z{pZq

is an isomorphism. Moreover, Ext1
ZpHnpY,Zq,Z{pZq “ Ext1

ZpHn´2pY,Zq,Z{pZq “ 0 for al-
most all primes p. It follows by the universal coefficient sequence that Hn´1pY,Z{pZq Ñ
Hn`1pY,Z{pZq is an isomorphism for almost all primes p.

�

Lemma 4.11. Let X denote a smooth hyperplane section of a smooth projective variety Y Ă PNC
of dimension n. Then

N1Hn´1pX,Z{pZq “ N1Hn´1pY,Z{pZq `N1Hn´1
ev pX,Z{pZq

for almost all p.

Proof. This follows from the previous lemma since one has a commutative diagram with exact
row:

0 // Hn´1
ev pX,Z{pZq // Hn´1pX,Z{pZq // Hn`1pY,Z{pZq // 0

Hn´1pY,Z{pZq

OO 66

�

Proof of Theorem 4.9. We may proceed as in the proof of Theorem 4.5. In particular, it is
enough to show that for almost all primes p (and a ąą 0):

N1H3pYη̄S ,Z{pZq Ñ N1H3pXη̄S ,Z{pZq
is an isomorphism. Let U Ă SpecpAq denote the open subset as in the property pHq above. First
note that, for almost all primes p, there is a closed point s P U with residue field of char. p.
By arguing as before, we can find a complete DVR R with perfect residue field k and quotient
field K with SpecpKq Ñ ηS (i.e. kpηSq Ă K) such that the following holds: We have XR Ă YR
smooth proper over R such that the base change of the pair pXη̄S ,Yη̄S q to K̄ is the base change
of the pair pXR, YRq to K̄. As before, we are reduced to showing that the natural restriction
map N1H3pXK̄ ,Z{pZq Ñ N1H3pYK̄ ,Z{pZq is an isomorphism. We shall show that this is the
case for almost all p under our assumptions.
Step 1: First, note that N1H3

evpXK̄ ,Z{pZq is a strict subset of H3
evpXK̄ ,Z{pZq for almost all

p. To see this, we apply Theorem 4.3 to the present situation. The hypothesis (H) above
guarantees that assumption (i) of that theorem is satisfied for almost all primes. Similarly,
we may assume (ii) by taking primes large enough (since dimpXq “ 3, we may take p ě 5).
Furthermore, by taking the degree of X to be large, we may also assume the assumption (iii) of
that theorem holds. Finally, assumption (iv) of the theorem follows for almost all primes from
Lemma 4.10. We can simply choose an algebraically closed field which contains both K̄ and C,
and then apply the Lemma while noting that étale cohomology is invariant under algebraically
closed field extensions.
Step 2: Next note that Lemma 4.11 (and arguing as above) implies that

N1H3pXK̄ ,Z{pZq “ N1H3pYK̄ ,Z{pZq `N1H3
evpXK̄ ,Z{pZq
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for almost all p.
Step 3: Finally, the irreducibility of the monodromy action on vanishing cycles (for almost all
primes p and X with large degree) implies that N1H3

evpXK̄ ,Z{pZq “ 0 for all almost all primes
p, and so the result follows from Step 2. �

Combining everything gives the following result:

Corollary 4.12. Let Y be as above (dimpY q “ 4). Furthermore, suppose that the hypothesis
(H) is satisfied. Then the natural restriction map

CH2pY qtpu Ñ CH2pXqtpu

is an isomorphism for very general X of large enough degree and almost all primes p.

As remarked earlier, Illusie’s Theorem 4.1 allows one, in principal, to construct some examples
where (H) is satisfied. This is the case if Y is a quadric or if it is P4 (which was already
considered before). More generally, Illusie’s theorem implies that for any smooth complete
intersection Y Ă PN its generic hyperplane section is ordinary. In particular, one has the
following corollary:

Corollary 4.13. Let Y Ă PNC denote a smooth complete intersection of multidegree pd1, . . . , dkq
of dimpY q “ 4, and X Ă Y a very general hyperplane section of high degree. If Y is general,
then CH2pXqtpu “ 0 for almost all primes p.

Proof. By the previous remarks and Corollary 4.12, the restriction map

CH2pY qtpu Ñ CH2pXqtpu

is an isomorphism for almost all primes p and X very general of high enough degree. On the
other hand, by Corollary 3.4 applied to Y “ PN and X “ Y , we have that for a general Y as
above, CH2pY qtpu “ 0. �

Remark 10. Suppose that we start with a complete intersection Y as in Corollary 4.13 which is
defined over Q. Then the set of primes which might be ‘problematic’ (i.e. where CH2pXqtpu ‰ 0
for X very general of high degree in YC) are precisely the primes where Y has bad reduction.
While the result should still be true in those cases, the strategy of proof employed above does
not allows us to conclude anything for such primes.

It would also be interesting to find examples of fourfolds Y which satisfy hypothesis pHq and
have non-vanishing H3pY q.

5. Torsion in the Griffiths group

5.1. The weak Lefschetz theorem for torsion in the Griffiths group. We set up some
notation and recall some results. For a smooth projective variety Z:

‚ A2pZq will denote the subgroup of cycles algebraically equivalent to zero in CH2pZq.
‚ J2pZq :“ Ext1

MHSpZp´2q,H3pZqq will denote the Griffiths intermediate Jacobian.
‚ J2

0pZq will denote the intermediate Jacobian of the largest integral Hodge structure in
H1,2pZq‘H2,1pZq. Equivalently, J2

0pZq is the largest abelian variety contained in J2pZq.
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Proposition 5.1. Let Y Ă PNC be a smooth, projective variety and X be a general ample
hyperplane section in Y . If dimY ě 5, then the restriction map

A2pY qtpu Ñ A2pXqtpu

is an isomorphism for all primes p. If dimpY q “ 4, then the restriction map above is an injection
for all primes p.

Proof. We first claim that the hypothesis will ensure that the restriction map

(5.1.1) CH2
hompY qtpu Ñ CH2

hompXqtpu

is an isomorphism if dimpY q ě 5 and an injection if dimpY q “ 4. The injectivity follows since
the image of the composition

CH2
hompY qtpu ãÑ CH2pY qtpu

–
ÝÑ CH2pXqtpu

lands in CH2
hompXqtpu. For surjectivity, suppose dimpY q ě 5, and let ξ P CH2

hompXqtpu Ă
CH2pXqtpu. Then ξ lifts to a cycle ξ1 P CH2pY qtpu by Corollary 3.4. On the other hand, the
usual weak Lefschetz now shows that ξ1 must be homologically equivalent to zero. Now, the
isomorphism in 5.1.1 implies that A2pY qtpu injects into A2pXqtpu. Hence we need to prove
that A2pY qtpu Ñ A2pXqtpu is a surjection. By Theorem 10.3 [12], this in turn is equivalent
to proving that the injection J2

0pY qtpu Ñ J2
0pXqtpu is also a surjection. On the other hand,

J2pY q Ñ J2pXq is an isomorphism by the weak Lefschetz theorem.
�

Proof of Theorem 1.7. We first claim that the exact sequence

0 Ñ A2pZq Ñ CH2
hompZq Ñ Grif 2pZq Ñ 0

restricts to an exact sequence

0 Ñ A2pZqtors Ñ CH2
hompZqtors Ñ Grif 2pZqtors Ñ 0.

Observe that it is enough to prove the sequence is right exact. So let z P CH2
hompZq be such

that z̄ :“ z ` A2pZq is a non-trivial torsion element in Grif2pZq. Then there exists an N ą 0
such that Nz P A2pZq. If Nz ‰ 0, then since A2pZq is divisible, this means that z P A2pZq
which in turn will imply z̄ “ 0, a contradiction. Thus any lift of a cycle in Grif2pZqtors lies in
CH2

hompZqtors.
One concludes the proof by applying the snake lemma to the diagram

0 Ñ A2pY qtors Ñ CH2
hompY qtors Ñ Grif 2pY qtors Ñ 0

Ó– Ó– Ó

0 Ñ A2pXqtors Ñ CH2
hompXqtors Ñ Grif 2pXqtors Ñ 0,

where the two left most vertical maps are isomorphisms if dimpY q ě 5 by Proposition 5.1 and
its proof. �

Remark 11. Let dimY “ 4, and assume that CH2pY qtors Ă CH2pY qhom – for eg. assume
H4pY,Zqtors “ 0. Then with hypothesis as in Theorem 1.6, one also obtains the following
Noether-Lefschetz theorem: for X a very general, sufficiently ample hypersurface in Y , the
restriction map Grif2pY qtpu Ñ Grif2pXqtpu is an isomorphism for almost all primes p. The
proof is similar to the proof of Theorem 1.7.
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5.2. A question of Nori. Griffiths’ Abel-Jacobi map θ : CH2
hompZq Ñ J2pZq descends to a

map θ : Grif2pZq Ñ J2pZq{J2
0pZq. Nori (see [13]) asks if θ is an injection. The techniques used

in the above subsection yields a partial answer to this question.

Proposition 5.2. Let Z be any smooth, projective variety over C. The map θ when restricted
to the torsion subgroup Grif2pZqtors is an injection.

Proof. Consider the diagram of exact sequences:

0 Ñ A2pZqtors Ñ CH2
hompZqtors Ñ Grif 2pZqtors Ñ 0

Ó Ó Ó

0 Ñ J2
0pZqtors Ñ J2pZqtors Ñ pJ2pSq{J2

0pZqqtors Ñ 0.

Here the vertical maps are the Abel-Jacobi maps. The left most vertical map is bijective by
[12], Theorem 10.3, and the middle vertical is injective by [5], Corollaire 5. The injectivity of θ
on Grif2pZqtors follows. �

References
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