MA 16010 Lesson 35: Exponential Growth

Recall: A differential equation is an equation involving $t, y = y(t), y', y'' \dots$

we studied
$$y' = f(t)$$
 (e.g. $y' = 3t+1$)
 $y'' = g(t)$ (e.g. $y'' = sin(t) + 2$, ...)

Today we consider equations of the form

$$(y' = ky)$$
 (k is a constant). (*)

Observe/recall:

•
$$g = e^{\frac{1}{2}}$$
 It $\left[e^{\frac{1}{2}}\right] = e^{\frac{1}{2}}$ = $e^{\frac{1}{2}}$ is a solution of the eqn $g' = g'$

The general solution to the equation (*) is:
$$y = C \cdot e^{kt}$$
 C a constant

Exercise: Solve the initial value problem $\frac{dy}{dt} = 3y$, y(0) = 15.

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 3y, \quad y(0) = 15.$$

$$C = 15 \longrightarrow y = 15 \cdot e^{3t}$$

Exercise: Given that
$$\frac{dy}{dt} = 6y$$
, $y(6) = 20$, find $y(10)$.

general solution: $y = C \cdot e^{6t}$

particular solution: $y(6) = 70$
 $y = 70 \cdot e^{6t}$
 $y(6) = 70 \cdot e^{6t}$

Exercise: The population of a culture of bacteria, P(t), where t is time in days, is growing at a rate proportional to the population. The growth rate is 0.3. If the initial population is P(0) = 1000,

(a) how big is the population after 10 days?

$$\frac{dP}{dt} = 0.3P, \quad P(0) = 1000$$

$$- P(t) = C \cdot e^{0.3t} \quad P(0) = 1000$$

$$C \cdot e^{0.90} = 1000$$

$$C = 1000$$

(b) how long will it take for the population to double?

Exercise: John currently has \$8000 on a savings account at Bank A. On his account, the interest is compounded continuously, with the annual rate of interest 4.5%.

(a) How much will be in the account after 9 years? Round to nearest cent.

A = am-and of dellars

$$\frac{dA}{dt} = 0.0454$$
 $A(0) = 8000$
 $A(1) = 8000$
 $A(2) = 8000$
 $A(3) = 8000$
 $A(3) = 8000$
 $A(4) = 8000$
 $A(5) = 8000$
 $A(6) = 8000$
 $A(7) =$

(b) John also has \$10000 on an account at Bank B, also compounded continuously. The bank guarantees that this amount will grow to \$12500 after 7 years. What is the annual interest rate?

AB = quant of dollars

$$dB = r \cdot B \quad \text{want to find the rate } r$$

$$B(t) = C \cdot e^{rt} \quad |3(0) = 10 \text{ onc}$$

$$C \cdot e^{r \cdot 0} = 10 \text{ occ}$$

$$C = 10 \text{ occ}$$

$$R = 12500$$

$$R = 125$$