Geometric Quadratic Chabauty over number fields

joint with David Lilienfeldt, Luciena X. Xiao, Zijian Yao

Pavel Čoupek Purdue University MFF Number Theory Seminar, 15. 12. 2020

I. Motivation & Background

Classical algebraic geometry – affine

Fix a field *K*. Let $f_1, f_2, \ldots, f_m \in K[x_1, x_2, \ldots, x_n]$ be some polynomials.

• The affine variety
$$X = V(f_1, f_2, \dots, f_m)$$
 "is"

$$X \equiv X(\overline{K}) = \{P \in \overline{K}^n : f_i(P) = 0 \ \forall i\} \subseteq \mathbb{A}^n(\overline{K}) = \overline{K}^n$$

(together with *Zariski topology*: a subset $Z \subset X(\overline{K})$ is closed if $Z = V(g_1, \ldots, g_l)$ for some $g_1, g_2, \ldots, g_l \in K[x_1, x_2, \ldots, x_n]$)

▶ In fact, for a field extension $K \hookrightarrow L$, denote by X(L) the set of *L*-points of *X*,

$$X(L) = \{ P \in L^n : f_i(P) = 0 \ \forall i \}.$$

▶ In particular, *X*(*K*) is the *set of K-rational points* of *X*.

• Setting $A = K[\underline{x}]/(\underline{f})$, (or, better: $A' = K[\underline{x}]/\sqrt{(\underline{f})}$), there is a natural bijection

$$\operatorname{Alg}_{K}(A,L) \simeq X(L)$$
 (and also $\operatorname{Alg}_{K}(A',L) \simeq X(L)$).

A' is called the *coordinate ring* of *X*.

Classical algebraic geometry – projective

Fix a field *K*. Let $f_1, f_2, \ldots, f_m \in K[x_0, x_1, \ldots, x_n]$ be some nonconstant *homogeneous* polynomials: $f_i(\lambda \underline{x}) = \lambda^{d_i} f_i(\underline{x})$ where $d_i = \deg f_i$.

For a field embedding $K \hookrightarrow L$, set

$$\mathbb{P}^{n}(L) = (L^{n+1} \setminus \{0\}) / \sim, \quad \nu \sim \lambda \nu \quad \forall \lambda \in L \; \forall \nu \in L^{n+1}.$$

• The projective variety $X = V_p(f_1, f_2, ..., f_m)$ determines its sets of *L*-points,

$$X(L)=\{P=[x_0:x_1:\cdots:x_n]\in \mathbb{P}^n(L): f_i(x_0,x_1,\ldots,x_n)=0 \;\; orall i\}\subseteq \mathbb{P}^n(L).$$

- ▶ In particular, *X*(*K*) is the *set of K-rational points* of *X*.
- ▶ We may again identify $X \equiv X(\overline{K})$ as a subset of $\mathbb{P}^n(\overline{K})$, and endow it with the Zariski topology, where closed subsets are (\overline{K} -points of) projective subvarieties.
- A *quasi-projective variety* is an open subset U of a projective variety. It comes with a ring of functions on U.

Diophantine equations and algebraic geometry (I)

Consider a system of diophantine equations

$$f_i(x_1, x_2, \ldots, x_n) = 0, \ f_i \in \mathbb{Z}[x_1, x_2, \ldots, x_n], \ i = 1, 2, \ldots, m.$$

Suppose that f_i 's are homogeneous. Then

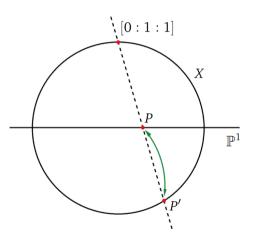
solutions in
$$\mathbb{Z}^n \iff$$
 solutions in \mathbb{Q}^n
 $\mathbb{Z} \cdot d\left(\frac{a_1}{b_1}, \frac{a_2}{b_2}, \dots, \frac{a_n}{b_n}\right) \leftrightarrow \left(\frac{a_1}{b_1}, \frac{a_2}{b_2}, \dots, \frac{a_n}{b_n}\right)$
 $d = \operatorname{lcm}(b_1, b_2, \dots, b_n).$

⇒ Solutions correspond to rational points of the projective variety $X = V_p(f_1, f_2, ..., f_m)$ ⇒ One can use geometry of *X* to describe the solutions. Diophantine equations and algebraic geometry (I)

Example (Pythagorean triples)

 $x^{2} + y^{2} = z^{2}, \quad x, y, z \in \mathbb{Z}$ Then $X = V(x^{2} + y^{2} - z^{2})$ is isomorphic to \mathbb{P}^{1} : $\mathbb{P}^{1} \xrightarrow{\sim} X$ $[t:v] \longmapsto [2tv:t^{2} - v^{2}:t^{2} + v^{2}]$ $[x:z-y] \longleftarrow [x:y:z]$

The map $\mathbb{P}^1 \to X$ parametrizes $X(\mathbb{Q})$ by $\mathbb{P}^1(\mathbb{Q})$.



・ロト・日本・山田・山田・山口・

Analytifications

Assume that *X* is a smooth variety over *K*.

- ▶ If $K \subseteq \mathbb{C}$, then $X(\mathbb{C})$ is naturally a complex manifold locally, it is isomorphic to unit ball in \mathbb{C}^m for some *m*.
- An analogue of this holds over other topological fields, such as

$$\mathbb{Q}_p = \left\{ \sum_{i=-n}^\infty a_i p^i \mid n \geq 0, \; a_i \in \{0,1,2,\ldots,p-1\}
ight\},$$

whose topology is dictated by the norm

$$\left|\sum_{i=-n}^{\infty}a_{i}p^{i}\right|:=p^{-k}, \ k \text{ smallest such that } a_{k}\neq 0$$

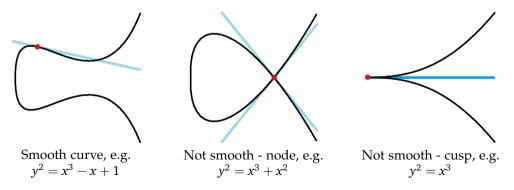
(more generally, may consider completion K_p of a number field K at a prime p).

▶ If $K \subseteq \mathbb{Q}_p$, then $X(\mathbb{Q}_p)$ has a structure of a *p*-adic analytic manifold. Locally, it s isomorphic to \mathbb{Z}_p^m for some *m*.

Smooth projective curves

- ► *Algebraic curves* are varieties of dimension 1.
- A curve is *smooth* if at every point, it has only one tangent line.

Example

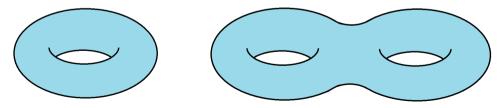


Smooth projective curves

Projective smooth curves are categorized by their genus:

- *C* is a smooth projective curve over $K \subseteq \mathbb{C}$ $\Rightarrow C(\mathbb{C})$ is a compact complex manifold of dim = 1 (*Riemann surface*) $\Rightarrow C(\mathbb{C})$ is a compact topological manifold of dim = 2.
- Classification theorem $\Rightarrow C(\mathbb{C})$ is a sphere with *g* handles attached.
- The genus of C = g :=the number of handles.

Example



Genus 1 curve

Genus 2 curve

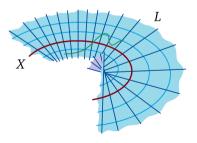
Line bundles and \mathbb{G}_m -torsors

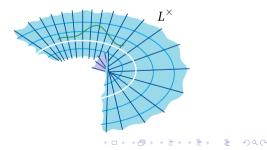
A *line bundle* on a variety *X* is a variety *L* together with a map $\pi : L \to X$ such that

 $\forall U \subseteq X \text{ small enough open: } (\pi^{-1}(L) \xrightarrow{\pi} U) \simeq (U \times \mathbb{A}^1 \xrightarrow{\operatorname{pr}_U} U)$

(+ compatibility condition on the iso's).

- ▶ Fibers of *L* over points of *X* are 1-dim. vector spaces, that "vary continuously".
- ► An isomorphic copy of *X* sits in *L*, as the 0-elements in each fiber.
- ► A G_m-torsor L[×] is obtained from L by removing X from L. It retains the action of nonzero scalars in fibres.



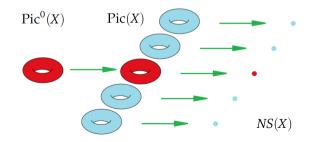


Picard variety

Assume that *X* is projective over *K*, char K = 0.

- ▶ Line bundles on *X* form a commutative group, under $(L_1, L_2) \mapsto L_1 \otimes L_2$. The resulting group is Pic(*X*), the *Picard group of X*.
- Pic(X) itself has a geometric structure, and the connected component Pic⁰(X) of the neutral element is called the *Picard variety of X*.
 Pic⁰(X) is an *Abelian variety* = projective connected variety with group structure.

▶ $NS(X) := Pic(X)/Pic^{0}(X)$ is the *Néron-Severi group*. It is a fin-gen Abelian group.



Two important cases:

- When X = C is a smooth projective curve, J := Pic⁰(C) is called the *Jacobian of C*.
 ▶ dim J = genus of C.
 - Any "choice of origin" $b \in C(K)$ induces an embedding $j_b : C \hookrightarrow J$, called *Abel–Jacobi map*.

- 2. When X = A is an Abelian variety, A[∨] := Pic⁰(A) is called the *dual abelian variety of A*.
 A^{∨∨} = A
 - There are always isogenies $A \to A^{\vee}, A^{\vee} \to A$.
 - If A = J is a Jacobian of a curve, the isogenies may be chosen as isomorphisms.

Diophantine equations and algebraic geometry (II)

- ► Want to "attach geometry" to general systems of diophantine equations.
- ▶ Given such a system,

(*)
$$f_i(\underline{x}) = 0, \ f_i(\underline{x}) \in \mathbb{Z}[x_1, x_2, \dots, x_n],$$

upon setting $A = \mathbb{Z}[\underline{x}]/(\underline{f})$, one still has

 $\operatorname{Alg}_{\mathbb{Z}}(A,\mathbb{Z}) \stackrel{1-1}{\leftrightarrow}$ solutions of (*).

 \rightsquigarrow need a geometric object for which *A* would be a "coordinate ring".

Such an object is *the affine scheme* X = Spec A:

- As a topological space, Spec A = {p ⊆ A | p is a prime ideal}, and closed sets are of the form V(I) = {p | I ⊆ p} for any ideal I ⊆ A
- Given another affine scheme $Y = \operatorname{Spec} B$, maps of schemes $Y \to X$ correspond precisely to

$$\operatorname{Alg}_{\mathbb{Z}}(A,B) =: X(B),$$

the "B-valued points of X".

- General schemes are spaces that are locally modelled by affine schemes.
- ► Given a scheme *S*, one can consider *schemes over S* (*S-schemes*)= morphisms of schemes *X* → *S*. Morphism of *S*-schemes is a morphism of schemes compatible with the structure maps to *S*.
- ► Any scheme is tautologically a scheme over Spec ℤ; given a field *K*, classical varieties over *K* naturally correspond to certain schemes over Spec *K*.
- Given two *S*-schemes *X*, *Y*, the set of *S*-morphisms $Y \rightarrow X$ is sometimes denoted by X(Y), and called the "set of *Y*-valued points of *X*".
- ▶ Points are functorial in *X* and *Y*:

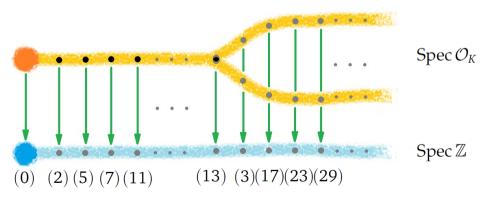
a morphism of S-schemes
$$\begin{array}{cc} Y_1 \to Y_2 \\ (X_1 \to X_2, \ \mathrm{resp.}) \end{array}$$
 induces a map $\begin{array}{c} X(Y_2) \to X(Y_1). \\ (X_1(Y) \to X_2(Y) \ \mathrm{resp.}) \end{array}$

Schemes – examples

Example (Number fields)

 K/\mathbb{Q} finite extension ($K = \mathbb{Q}(\sqrt{13})$ on picture).

 $\mathbb{Z} \subseteq \mathcal{O}_K$ induces a map Spec $\mathcal{O}_K \to$ Spec \mathbb{Z} , which is a cover of "curves" of degree $[K : \mathbb{Q}]$. *Fact:* Pic (Spec \mathcal{O}_K) = Cl(K).

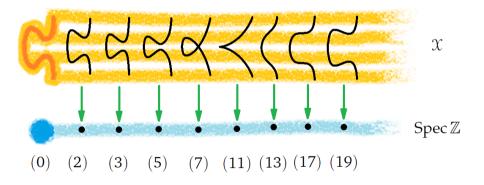


Schemes – examples

Example (integral models)

For a variety X/\mathbb{Q} , one can consider various schemes \mathfrak{X} over \mathbb{Z} such that $\mathfrak{X}(R) = X(R)$ for every \mathbb{Q} -algebra R.

Upshot: Can consider points $\mathfrak{X}(R)$ for *R* not necessarily over \mathbb{Q} - e.g. $\mathfrak{X}(\mathbb{F}_p)$ or $\mathfrak{X}(\overline{\mathbb{F}_p})$.



Theorem (Mordell–Weil Theorem; '22, '29)

Let A be an Abelian variety over a number field K. Then A(K) is a finitely generated group.

Theorem (Mordell's conjecture; Faltings '83)

Let C be a smooth, projective, geometrically connected curve of genus $g \ge 2$ *over a number field K. Then* C(K) *is a finite set.*

Questions of *effectivity* and *explicit methods*:

- ► How to algorithmically compute *C*(*K*)?
- ► How to produce sharp bound?

•

How to make optimal bounds in families?

II. Chabauty–Coleman & Beyond

Chabauty-Coleman

Let *J* denote the Jacobian of *C*. Denote $r = \operatorname{rank}_{\mathbb{Z}} J(K)$ its Mordell-Weil rank. Theorem (Chabauty '41) If $r \leq g - 1$ then |C(K)| is finite.

first proof of special case of Mordell's conjecture

Theorem (Coleman '85)

Under the same assumption, fix an unramified prime p|p of good reduction such that p > 2g. Then

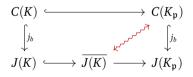
$$|C(K)| \leq N(\mathfrak{p}) + 2g(\sqrt{N(\mathfrak{p})} + 1) - 1.$$

- "good" bound on the size of |C(K)|
- Further improvements by Stoll (2006), Katz–Zurieck-Brown (2013), Katz–Rabinoff–Zurieck-Brown (2016), . . .

Siksek (2013): explicit Chabauty over number fields, method of Weil restriction

Strategy:

Let $b \in C(K)$ be a point, and $j_b : C \hookrightarrow J$ the Abel–Jacobi map.

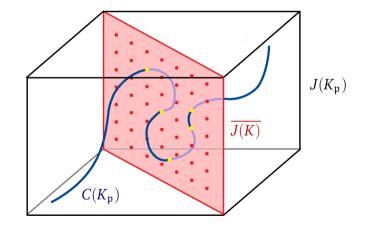


Then $C(K) \subseteq C(K_{\mathfrak{p}}) \cap \overline{J(K)}$.

 $C(K_{\mathfrak{p}}), \overline{J(K)}$ are \mathfrak{p} -adic manifolds of dimensions 1 and $r' \leq r$, resp., in the \mathfrak{p} -adic manifold $J(K_{\mathfrak{p}})$ of dimension g > r'.

・ロト・日本・ モー・ モー・ つくぐ

Chabauty–Coleman



Chabauty-Coleman

Strategy:

$$C(K) \xrightarrow{} C(K_{\mathfrak{p}}) \xrightarrow{} C(K_{\mathfrak{p}}) \xrightarrow{} J_{j_{b}} \xrightarrow{} J$$

log, \int are given by $x \mapsto \int_b^x (\bullet)$, the *Coleman integral*. Let

$$V = \{ \omega \in H^0(J, \Omega^1_{J_{K\mathfrak{p}}/K\mathfrak{p}}) \mid \int_b^x \omega = 0 \ \forall x \in \overline{J(K)} \}.$$

Then

$$C(K_{\mathfrak{p}}) \cap \overline{J(K)} \subseteq \{x \in C(K_{\mathfrak{p}}) \mid \int_{b}^{x} j_{b}^{*} \omega = 0 \ \forall \omega \in V\} =: C(K_{\mathfrak{p}})_{1}$$

If r' < g, then $V \neq 0$ and it can be shown that $C(K_p)_1$ is finite.

Example (Hirakawa–Matsumura 2019)

Q: Can a rational right triangle and a rational isosceles triangle have the same area and perimeter?

Upon setting up parameters for lengths of sides appropriately and simplifying, this leads to the task of finding $C(\mathbb{Q})$ for

$$C: y^2 = x^6 + 12x^5 - 32x^4 + 52x^2 - 48x + 16.$$

A list of 10 points is

$$\infty^{\pm}, (0, \pm 4), (1, \pm 1), (2, \pm 8), \ P^{\pm} = (12/11, \pm 868/11^3).$$

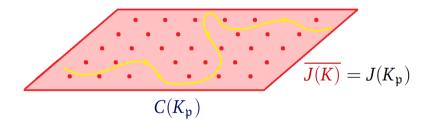
Only P^+ corresponds to a pair of triangles.

Chabauty–Coleman bound $\Rightarrow |C(\mathbb{Q})| \le 10 \Rightarrow$ the list is complete.

The unique pair of triangles has sides (377, 135, 352) and (366, 366, 132), up to scaling.

Chabauty-Coleman

Problem when r' = g:

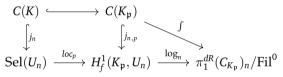


▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 - つくぐ

 \rightsquigarrow need to "extend the method beyond Jacobian".

Chabauty-Kim program

Kim (2005, 2009) **Goal:** Extend the method beyond the r < g case



 U_n = certain unipotent quotients of $\pi_1^{et}(C_{\overline{K}})$

 $C(K_{\mathfrak{p}})_n = j_{n,p}^{-1}(loc_p(\operatorname{Sel}(U_n)))$

Conjecture (Kim)

For n >> 0, $C(K_{\mathfrak{p}})_n$ is finite and coincides with C(K).

- Case n = 2 of Kim's program
- uses double Coleman integrals
- Balakrishnan-Dogra (2016, 2017) quadratic Chabauty over Q
- Balakrishnan-Dogra-Müller-Tuitman-Vonk (2017)
 - determined rational points of X_s(13), "cursed curve"
 - application to Serre's uniformity problem
- Balakrishnan-Besser-Bianchi-Müller (2019)
 explicit quadratic Chabauty for hyperelliptic curves over number fields

II. Geometric quadratic Chabauty

Geometric quadratic Chabauty over \mathbb{Q}

Edixhoven–Lido (2019) Goal: Formulate quadratic Chabauty in terms of "simple" geometry

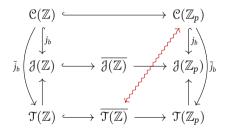
$$\begin{array}{ccc} C(\mathbb{Q}) & & \longrightarrow & C(\mathbb{Q}_p) \\ & & & & & \downarrow_{j_b} \\ & & & & & \downarrow_{j_b} \\ J(\mathbb{Q}) & & \longrightarrow & \overline{J(\mathbb{Q}_p)} & \xrightarrow{} & J(\mathbb{Q}_p) \\ & & & & & \uparrow & \downarrow \\ & & & & & \uparrow & & \downarrow \\ T(\mathbb{Q}) & & \longrightarrow & \overline{T(\mathbb{Q})} & \longrightarrow & T(\mathbb{Q}_p) \end{array}$$

T is a certain $\mathbb{G}_m^{\rho-1}$ -torsor on *J*, $\rho = \operatorname{rank} NS(J)$

Problem: $T(\mathbb{Q})$ has too many points ($\mathbb{Q}^{\times, \rho-1}$ in fibers)

Geometric quadratic Chabauty over \mathbb{Q}

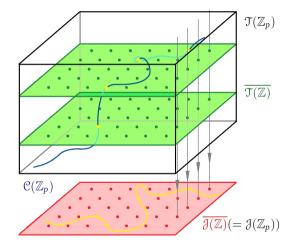
Edixhoven–Lido (2019) Goal: Formulate quadratic Chabauty in terms of "simple" geometry



▲□▶▲母▶▲글▶▲글▶ 글 のQへ

 \mathcal{T} is a certain $\mathbb{G}_m^{\rho-1}$ -torsor on \mathcal{J} , \mathcal{J} is the Néron model of J, \mathcal{C} is the smooth locus in a regular proper model of C.

Geometric quadratic Chabauty over \mathbb{Q}



Poincaré biextension

Let $P \to J \times J^{\vee}$ be the *Poincaré line bundle*:

- ▶ $P|_{J \times \{x\}} = L_x$, the line bundle corresponding to $x \in J^{\vee}$
- ▶ $P|_{J \times \{0\}}, P|_{\{0\} \times J^{\vee}}$ are trivial line bundles on J, J^{\vee} , resp.

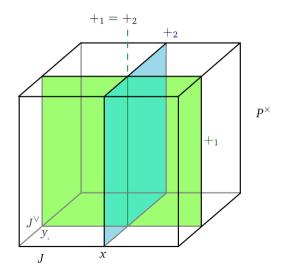
Let P^{\times} be the associated \mathbb{G}_m -torsor on $J \times J^{\vee}$. It has the structure of a \mathbb{G}_m -biextension:

- ► There are partial operations
 - ▶ +1 on all points over a point of the form $(*, y) \in J \times J^{\vee}$, making it a commutative group,
 - ▶ +2 on all points over a point of the form $(x, *) \in J \times J^{\vee}$, making it a commutative group,
 - compatibility of the two operations:

$$(a + b) + c (c + d) = (a + c) + b (b + d)$$

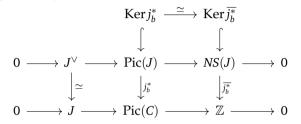
whenever the above makes sense.

Poincaré biextension



Constructing T

From now on, assume that $\rho = \operatorname{rank} NS(J) = 2$. We need a non-trivial \mathbb{G}_m -torsor *T* such that *C* lifts to *T* – equivalently, such that $T|_C$ is a trivial torsor over *C*.



Then rank Ker $j_b^* = \rho - 1 = 1$, so there is essentially unique \mathbb{G}_m -torsor on J that is trivial over $C \hookrightarrow J$. Moreover, it is of the form

$$T'=(\mathrm{id}_J,\mathrm{t}_c\circ f)^*P^ imes,\,f\in\mathrm{Hom}(J,J^ee)^+,\,\,c\in J^ee(\mathbb{Q}).$$

That is, T' is obtained by restricting the Poincaré torsor to a copy of J, embedded into $J \times J^{\vee}$ via $(\mathrm{id}_J, \mathrm{t}_c \circ f) : J \to J \times J^{\vee}$. For technical reasons we take $T = (\mathrm{id}_J, m \cdot \circ \mathrm{t}_c \circ f)^* P^{\times}$.

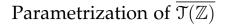
The \mathbb{G}_m -torsor \mathcal{T} on \mathcal{J} is then given by

$$\mathfrak{T} = (\mathrm{id}_{\mathcal{J}}, m \cdot \circ \mathfrak{t}_{c} \circ f)^{*} \mathfrak{P}^{\times}$$

for the analogous embedding $(\mathrm{id}_{\mathcal{J}}, m \cdot \circ t_c \circ f) : \mathcal{J} \to \mathcal{J} \times \mathcal{J}^{\vee \circ}$, where:

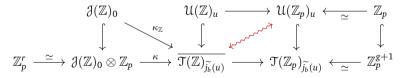
- ▶ J^{∨,◦} is a fiberwise connected component of J[∨],
- \mathcal{P}^{\times} is an integral model of P^{\times} as a \mathbb{G}_m -biextension,
- *m* is an integer large enough to annihilate $\mathcal{J}^{\vee}/\mathcal{J}^{\vee \circ}$.

The lift $\tilde{j}_b : \mathbb{C} \to \mathcal{T}$ does not exist globally anymore, but exists on certain open subschemes $\mathcal{U} \subseteq \mathbb{C}$ that are "big enough" to jointly contain all \mathbb{Z} -points.



► Work on *residue disks*:

 $\mathfrak{X}(\mathbb{Z}_p)_x = \text{ set of all } \widetilde{x} \in \mathfrak{X}(\mathbb{Z}_p) \text{ reducing to a given } x \in \mathfrak{X}(\mathbb{F}_p),$ $\mathfrak{X}(\mathbb{Z})_x = \mathfrak{X}(\mathbb{Z}_p)_x \cap \mathfrak{X}(\mathbb{Z}).$



• $\kappa_{\mathbb{Z}}$ is constructed using $+_1$ and $+_2$ of \mathcal{P}^{\times}

• $\kappa : \mathbb{Z}_p^r \to \mathbb{Z}_p^{g+1}$ can be expressed in terms of *p*-adically convergent power series.

Parametrization of $\overline{\mathfrak{T}(\mathbb{Z})}$

As a consequence, the maps $\mathcal{U}(\mathbb{Z}_p)_u) \xrightarrow{j_b} \mathcal{T}(\mathbb{Z}_p)_{\tilde{j_b}(u)} \xleftarrow{\kappa} \mathcal{J}(\mathbb{Z})_0 \otimes \mathbb{Z}_p$ induce maps of rings of *p*-adically convergent power series

$$\mathbb{Z}_p\langle X_1 \rangle \xleftarrow{\widetilde{j_b}^*} \mathbb{Z}_p\langle X_1, \dots, X_{g+1} \rangle \xrightarrow{\kappa^*} \mathbb{Z}_p\langle Y_1, \dots, Y_r \rangle,$$

and upon setting $A = \mathbb{Z}_p \langle Y_1, \dots, Y_r \rangle / I$, $I = (\kappa^*(\operatorname{Ker} \widetilde{j_b}^*))$, $\kappa^{-1}(\overline{\mathbb{T}(\mathbb{Z}_p)_{\widetilde{j_b}(u)}} \cap \mathfrak{U}(\mathbb{Z}_p)_u)$ corresponds to $\operatorname{Hom}(A, \mathbb{Z}_p)$.

Theorem (Edixhoven–Lido)

Assuming that $\overline{A} = A \otimes \mathbb{F}_p$ is finite, one has

 $|\mathcal{U}(\mathbb{Z})_u| \leq \dim_{\mathbb{F}_p} \overline{A}.$

Example (Edixhoven–Lido)

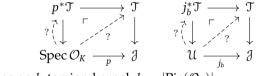
[EL] use the method to explicitly determine $C(\mathbb{Q})$ for a curve *C* with $g = 2, r = 2, \rho = 2$. *C* = certain quotient of the modular curve $X_0(129)$; $|C(\mathbb{Q})| = 14$.

Geometric quadratic Chabauty over number fields

Let K/\mathbb{Q} be a number field, $[K : \mathbb{Q}] = d = r_1 + 2r_2$.

Main obstacles in the number field case:

1. The class group $Cl(K) = Pic(\mathcal{O}_K)$ may prevent lifting \mathcal{O}_K -points and curves:

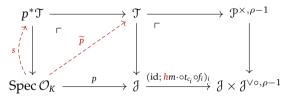


 $\operatorname{Pic}(\mathcal{U}) \to \operatorname{Pic}(C)$ has an *h*-torsion kernel, $h = |\operatorname{Pic}(\mathcal{O}_K)|$

2. $\mathfrak{T}(\mathcal{O}_K) \to \mathfrak{J}(\mathcal{O}_K)$ has still too many points, namely $\mathcal{O}_K^{\times,\rho-1} \simeq (\text{torsion}) \times \mathbb{Z}^{\delta(\rho-1)}, \ \delta = r_1 + r_2 - 1$ in (trivial) fibres

Geometric quadratic Chabauty over number fields

Solution to 1 (for $\rho = 2$):



Let $\mathfrak{T}' = (\mathrm{id}, m \cdot \circ t_{c_i} \circ f_i)_i^* \mathfrak{P}^{\times}.$

Then by the biextension law, one can show that

$$\mathfrak{T} = (\mathrm{id}, hm \cdot \circ t_{c_i} \circ f_i)_i^* \mathfrak{P}^{\times} = (\mathfrak{T}')^{\otimes h},$$

 $\mathfrak{P}^* \mathfrak{T} = (p^* \mathfrak{T}')^{\otimes h}$

 $\Rightarrow p^* \mathfrak{T}$ is an *h*-th power of a torsor on Spec \mathcal{O}_K , therefore trivial, i.e. *s* exists.

Geometric quadratic Chabauty over number fields

Solution to 2:

Parametrization includes action on fibers by a torsion-free part of $\mathbb{G}_m^{\rho-1}(\mathcal{O}_K), \ \mathcal{O}_{K,\mathrm{tf}}^{\times,\rho-1} \simeq \mathbb{Z}^{\delta(\rho-1)}.$

Key fact: The $\mathbb{G}_m^{\rho-1}$ -action on $\mathbb{P}^{\times,\rho-1}$ is expressible in terms of $+_1, +_2 \Rightarrow \kappa_{\mathbb{Z}}$ is still expressible in terms of $+_1, +_2$, and *p*-adic interpolation still works.

- ▶ Fix integral models $C, J, P^{\times}, U, ...,$ analogously
- ► Fix a rational prime *p* of good reduction, *e*(p_i/*p*) < *p* − 1 ∀p_i|*p*, and work on "multiresidue disks": fibers of

$$\mathfrak{X}(\mathcal{O}_{K}) \subseteq \mathfrak{X}(\prod_{i} \mathcal{O}_{K,\mathfrak{p}_{i}}) \to \mathfrak{X}(\prod_{i} \mathbb{F}_{\mathfrak{p}_{i}})$$

=
 $\mathfrak{X}(\mathcal{O}_{K}) \subseteq \prod_{i} \mathfrak{X}(\mathcal{O}_{K,\mathfrak{p}_{i}}) \to \prod_{i} \mathfrak{X}(\mathbb{F}_{\mathfrak{p}_{i}})$

Parametrization of a "multiresidue" disk now takes the form:

• $\mathcal{O}_{K,p} = \prod_i \mathcal{O}_{K,\mathfrak{p}_i}$; by a restriction of scalars procedure, or when *p* splits completely, may view $\mathcal{O}_{K,p} \simeq \mathbb{Z}_p^d$, then κ becomes

$$\kappa: \mathbb{Z}_p^{r+\delta(\rho-1)} \to \mathbb{Z}_p^{d(g+\rho-1)}$$

Theorem (Č., Lilienfeldt, Xiao, Yao)

Given a choice of "multiresidue" disks, there is an explicitly computable \mathbb{F}_p -algebra \overline{A} such that, assuming \overline{A} is finite,

 $|\mathcal{U}(\mathcal{O}_K)_u| \leq \dim_{\mathbb{F}_p} \overline{A}.$

▶ Method expected to work when $r + \delta(\rho - 1) \le d(g + \rho - 2)$, equivalently

$$r \le (g-1)d + (\rho - 1)(r_2 + 1)$$

- ▶ agrees with [BBBM] (quadratic Chabauty /*K*, hyperelliptic curves) when $\rho = 2$
- Over \mathbb{Q} , this gives $r \leq g + \rho 2$ same as [EL], [BD]
- Siksek (linear Chabauty /*K*): condition $r \leq (g 1)d$

Question

What is a reasonable sufficient condition for the intersection $\overline{T(\mathcal{O}_K)} \cap \mathfrak{U}(\mathcal{O}_{K,p})$ to be finite?

- ▶ in the $K = \mathbb{Q}$ case, assuming the quadratic Chabauty condition $r \leq g + \rho 2$ is enough (Edixhoven–Lido 2020)
- ▶ not expected to hold over *K*

Question

Assuming that $\overline{T(\mathcal{O}_K)} \cap U(\mathcal{O}_{K,p})$ is finite, does a suitable choice of a prime p lead to all the rings \overline{A} being finite?

Examples!

- reprove some already done examples, e.g. [BBBM]
- Bring's curve:

$$v + w + x + y + z = 0,$$

 $v^2 + w^2 + x^2 + y^2 + z^2 = 0,$
 $v^3 + w^3 + x^3 + y^3 + z^3 = 0$

Thank you!