Geometric Quadratic Chabauty over number fields

joint with David Lilienfeldt, Luciena X. Xiao, Zijian Yao

Pavel Coupek

Purdue University

MEFF Number Theory Seminar,
15. 12. 2020



I. Motivation & Background




Classical algebraic geometry — affine

Fix a field K. Let f1,f2, ... ,fim € K[x1,X2, ..., X, be some polynomials.

» The affine variety X = V(f1,f2, ... . fn) “is”

n

X=X[K)={PeK :£i(P)=0 Vi} CA"(K)=K

(together with Zariski topology: a subset Z C X(K) is closed if Z = V(gs, ..., &) for
some g1, 82, .. .8 € K1, x2,...,%,])

» In fact, for a field extension K — L, denote by X(L) the set of L-points of X,
X({L)={PelL": fi(P) =0 Vi}.
» In particular, X(K) is the set of K-rational points of X.
» Setting A = K[x]/(f), (or, better: A" = Klx]/ \/@), there is a natural bijection
Alg,(A,L) ~X(L) (and also Alg,(A’,L) ~X(L) ).

A’ is called the coordinate ring of X.



Classical algebraic geometry — projective

Fix a field K. Let f1,f2, ... ,fm € K[xo,X1, . . . , Xs] be some nonconstant homogeneous
polynomials: f;(Ax) = \f;(x) where d; = degf;.

» For a field embedding K — L, set
P'(L) = (L"T'\{0})/ ~, v~ VAELW L'
» The projective variety X = V,,(f1,f2, ... ,fm) determines its sets of L-points,
X(L)y={P=|xo:x1: - :xn) € P'(L) : fil>xo,x1,...,%n) =0 Vi} CP*(L).

» In particular, X(K) is the set of K-rational points of X.

» We may again identify X = X(K) as a subset of P"(K), and endow it with the Zariski
topology, where closed subsets are (K-points of) projective subvarieties.

» A quasi-projective variety is an open subset U of a projective variety. It comes with a
ring of functions on U.



Diophantine equations and algebraic geometry (I)

Consider a system of diophantine equations
filxr,x0, .. .,x) =0, fi €Z[x1,x0,...,%,], i=1,2,...,m.
Suppose that f;’s are homogeneous. Then
solutions in Z" & solutions in Q"
a a a, ay daz an
Z-dl—=,—=,...,0— |« | = —
<b1 b, bn> <b1 b, bn)

d= lcm(bl,bz, N ,bn).

= Solutions correspond to rational points of the projective variety X = V,(f1,f2, . ..

= One can use geometry of X to describe the solutions.

7fm)



Diophantine equations and algebraic geometry (I)

Example (Pythagorean triples)

2

x2+y2=z, xX,y,2 €7

Then X = V(x? +y* — 2%) is isomorphic to P! :

P—= X

[t:v] —— [200: 22 =2 2 447

x:z—y] «— [x:y:4

The map P! — X parametrizes X(Q) by P*(Q).




Analytifications

Assume that X is a smooth variety over K.

» If K C C, then X(C) is naturally a complex manifold - locally, it is isomorphic to unit
ball in C™ for some m.

» An analogue of this holds over other topological fields, such as

QP:{Zaipi|nZOa aie{0a1>27"-ap_1}}a

i=—n

whose topology is dictated by the norm

il .= p~*  k smallest such that ax # 0

(more generally, may consider completion K, of a number field K at a prime p).

» If K C Qp, then X(Q,) has a structure of a p-adic analytic manifold. Locally, it s
isomorphic to Zj' for some m.



Smooth projective curves

» Algebraic curves are varieties of dimension 1.

» A curve is smooth if at every point, it has only one tangent line.

Example

Smooth curve, e.g. Not smooth - node, e.g. Not smooth - cusp, e.g.
Y=x—x+1 ¥2 =23 422 y2 =3



Smooth projective curves

Projective smooth curves are categorized by their genus:

» C is a smooth projective curve over K C C
= C(C) is a compact complex manifold of dim = 1 (Riemann surface)
= C(C) is a compact topological manifold of dim = 2.

» Classification theorem = C(C) is a sphere with g handles attached.
» The genus of C = g :=the number of handles.

Example

Genus 1 curve Genus 2 curve



Line bundles and G,,—torsors

» A line bundle on a variety X is a variety L together with a map = : L — X such that

VU C X small enough open: (7~ (L) 5 U) ~ (U x A' ¥ 1)

(+ compatibility condition on the iso’s).
» Fibers of L over points of X are 1-dim. vector spaces, that “vary continuously”.
» An isomorphic copy of X sits in L, as the 0-elements in each fiber.
» A Gp-torsor L* is obtained from L by removing X from L. It retains the action of

nonzero scalars in fibres.




Picard variety

Assume that X is projective over K, charK = 0.
» Line bundles on X form a commutative group, under (L1,Ly) — L; ® L. The
resulting group is Pic(X), the Picard group of X.
> Pic(X) itself has a geometric structure, and the connected component Pic’(X) of the

neutral element is called the Picard variety of X.
Pic®(X) is an Abelian variety = projective connected variety with group structure.

> NS(X) := Pic(X)/Pic’(X) is the Néron-Severi group. It is a fin-gen Abelian group.

Pic®(X) Pic(X) @ R

—_—

=
® o -.

—i

©
@ —— NS(X)



Picard variety

Two important cases:

1. When X = C is a smooth projective curve, J := Pic’(C) is called the Jacobian of C.
» dimJ = genus of C.

» Any “choice of origin” b € C(K) induces an embedding j, : C < J, called Abel-Jacobi map.

2. When X = A is an Abelian variety, AV := Pic’(A) is called the dual abelian variety of A.
> AV =A

» There are always isogenies A —+ A, A" — A.

» If A =J is a Jacobian of a curve, the isogenies may be chosen as isomorphisms.



Diophantine equations and algebraic geometry (II)

» Want to “attach geometry” to general systems of diophantine equations.
» Given such a system,

(*) filx) =0, fi(x) € Zxy,x2, ...,

upon setting A = Z[x|/(f), one still has

Alg,(A,Z) & solutions of (x).

~+ need a geometric object for which A would be a “coordinate ring”.
» Such an object is the affine scheme X = SpecA:

> As a topological space, SpecA = {p C A | p is a prime ideal}, and closed sets are of the
form V(I) = {p | I C p} for any ideal ] C A
» Given another affine scheme Y = SpecB, maps of schemes Y — X correspond precisely to

Alg, (A, B) =: X(B),

the “B-valued points of X”.



Schemes (from bird’s-eye view)

» General schemes are spaces that are locally modelled by affine schemes.

> Given a scheme S, one can consider schemes over S (S-schemes)= morphisms of
schemes X — S. Morphism of S-schemes is a morphism of schemes compatible with
the structure maps to S.

» Any scheme is tautologically a scheme over Spec Z; given a field K, classical varieties
over K naturally correspond to certain schemes over SpecK.

» Given two S-schemes X, Y, the set of S-morphisms ¥ — X is sometimes denoted by
X(Y), and called the “set of Y-valued points of X”.

» Points are functorial in X and Y:

a morphism of S-schemes Y, =Y, induces a map X(Y2) = X(Y7).
(X1 — Xa, resp.) (X1(Y) = Xo(Y) resp.)



Schemes — examples

Example (Number fields)

K/Q finite extension (K = Q(+/13) on picture).

Z C Ok induces a map Spec Ox — Spec Z, which is a cover of “curves” of degree [K : Q.
Fact: Pic (Spec Ok) = CI(K).

[T

(0) ( (7)(11) 3)(17)(23)(29)

Spec Ok

1.
Ll

Spec Z



Schemes — examples

Example (integral models)

For a variety X/Q, one can consider various schemes X over Z such that X(R) = X(R) for
every Q-algebra R.
Upshot: Can consider points X(R) for R not necessarily over Q - e.g. X(F,) or X(F,).

dc%%o<<<<d |
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0) (2) (3 () (7) (11) (13)(17) (19)



Two key finiteness results

Theorem (Mordell-Weil Theorem; 22, '29)
Let A be an Abelian variety over a number field K. Then A(K) is a finitely generated group.

Theorem (Mordell’s conjecture; Faltings "83)

Let C be a smooth, projective, geometrically connected curve of genus g > 2 over a number field K.
Then C(K) is a finite set.

Questions of effectivity and explicit methods:
» How to algorithmically compute C(K)?
» How to produce sharp bound?
» How to make optimal bounds in families?
> ...



II. Chabauty—Coleman & Beyond




Chabauty—Coleman

Let J denote the Jacobian of C. Denote r = rankyz J(K) its Mordell-Weil rank.
Theorem (Chabauty "41)
Ifr < g —1 then |C(K)| is finite.

» first proof of special case of Mordell’s conjecture

Theorem (Coleman ’85)
Under the same assumption, fix an unramified prime p|p of good reduction such that p > 2g. Then

IC(K)| < N(p) + 2¢(v/N(p) + 1) — 1.

» “good” bound on the size of |C(K)|

» Further improvements by Stoll (2006), Katz—Zurieck-Brown (2013),
Katz—Rabinoff-Zurieck-Brown (2016), . ..

» Siksek (2013): explicit Chabauty over number fields, method of Weil restriction



Chabauty—Coleman

Strategy:
Let b € C(K) be a point, and j, : C — J the Abel-Jacobi map.
C(K) C(Ky)
Jb (rrﬂfﬁ \[jb
J(K) J(K) J(Kp)

Then C(K) C C(K,) NJ(K).

C(Ky),J(K) are p-adic/p-adic manifolds of dimensions 1 and ' < r, resp., in the p-adic
manifold J(K,) of dimension g > .



Chabauty—Coleman




Chabauty—Coleman

Strategy:
C(K)

[ ﬁﬁ Ifb \

J(K) CAUAION

log, [ are given by x — [, (), the Coleman integml. Let
V ={weH\, Q}K ) |y w=0 ¥xeJK)}
Then
C(Ky) NJ(K) C {x € C(Kp) | [, jiw =0 Yw € V} =: C(Kp)1.

If ' < g, then V # 0 and it can be shown that C(K}); is finite.



Chabauty—Coleman

Example (Hirakawa-Matsumura 2019)

Q: Can a rational right triangle and a rational isosceles triangle have the same area and
perimeter?

Upon setting up parameters for lengths of sides appropriately and simplifying, this leads
to the task of finding C(Q) for

C:y* =x5 +12x° — 32x* + 52x* — 48x + 16.
A list of 10 points is
oot (0, +4), (1,41), (2,48), P* =(12/11,+868/11°).

Only P* corresponds to a pair of triangles.
Chabauty—-Coleman bound = |C(Q)| < 10 = the list is complete.
The unique pair of triangles has sides (377,135, 352) and (366, 366, 132), up to scaling.



Chabauty—Coleman

Problem when ' = g :

C(Kp)

~ need to “extend the method beyond Jacobian”.



Chabauty-Kim program

Kim (2005, 2009)
Goal: Extend the method beyond the r < g case

C(K) — C(Ky)

J b T

loc
Sel(Un) —— H}(Kp, Uy) N R (Cx, )n/Fil°®
U, = certain unipotent quotients of 75*(Cg)

C(Kp)n = Jinp (locy (Sel(Un)))

Conjecture (Kim)
Forn >> 0, C(Ky)n is finite and coincides with C(K).



Quadratic Chabauty

Case n = 2 of Kim’s program
uses double Coleman integrals
Balakrishnan-Dogra (2016, 2017) - quadratic Chabauty over Q

Balakrishnan-Dogra-Miiller-Tuitman-Vonk (2017)
- determined rational points of X;(13), “cursed curve”
- application to Serre’s uniformity problem

» Balakrishnan-Besser-Bianchi-Miiller (2019)
- explicit quadratic Chabauty for hyperelliptic curves over number fields

vvyyy



II. Geometric quadratic Chabauty




Geometric quadratic Chabauty over Q

Edixhoven-Lido (2019)
Goal: Formulate quadratic Chabauty in terms of “simple” geometry

c(Q) C(Qp)

jjb jjb

| J(Q) —— J(Qp) J(Qp) |

I T

T(Q) — T(Q) —— T(Qp)

T is a certain Gf, '-torsor onJ,  p = rank NS(J)

Problem: T(Q) has too many points (Q**~1 in fibers)



Geometric quadratic Chabauty over Q

Edixhoven-Lido (2019)
Goal: Formulate quadratic Chabauty in terms of “simple” geometry

€(Z) C(Zp)
\[jb \[jb
w|d(Z) —— W I(Zp) |3

[ |

T(Z) — T(Z) — T(Zp)

T is a certain Gﬁfl—torsor on J,
J is the Néron model of J,
€ is the smooth locus in a regular proper model of C.



Geometric quadratic Chabauty over Q

T(Zy)
//
//




Poincaré biextension

Let P — J x JY be the Poincaré line bundle:
» P|)y(x} = Ly, the line bundle corresponding to x € J
» P|;x {0}, P|{oyxsv are trivial line bundles on J,JV, resp.

Let P* be the associated G,,-torsor on J x JV.

It has the structure of a G,,-biextension:

» There are partial operations

> -+, on all points over a point of the form (x,y) € J x J¥, making it a commutative group,
> +; on all points over a point of the form (x, *) € J x J*, making it a commutative group,
» compatibility of the two operations:

(@+1b) +2(c+1d) = (@a+z2c)+1 (b+2d)

whenever the above makes sense.



Poincaré biextension

J\/

P><



Constructing T

From now on, assume that p = rank NS(J) = 2. We need a non-trivial Gp,—torsor T such
that C lifts to T — equivalently, such that T|¢ is a trivial torsor over C.

Kerj; —— Kerji

[ l

0 —— JY —— Pic(J) —— NS(J) —— 0

Lk

0 —— J —— Pic(C) Z 0

Then rank Kerj; = p — 1 = 1, so there is essentialy unique Gp,-torsor on J that is trivial
over C < J. Moreover, it is of the form

T' = (idy, t. of)*P*, f € Hom(J,JY) ", c € JV(Q).

That is, T’ is obtained by restricting the Poincaré torsor to a copy of J, embeded into
J x JY via (idy,t. of) : J — J x J¥. For technical reasons we take T = (id;, m- o t. o f)*P*.



Constructing T

The G,,—torsor T on J is then given by
T = (idg,m- o t. o f)* P>

for the analogous embedding (idg,m-ot.of) : J — J x §V°, where:
» JV:° is a fiberwise connected component of J v
» P> is an integral model of P* as a G,-biextension,
» m is an integer large enough to annihilate J¥/J"°.

The lift j, : € — T does not exist globally anymore, but exists on certain open subschemes
U C € that are ”"big enough” to jointly contain all Z-points.



Parametrization of T(Z)

» Work on residue disks:

X(Zp)x = set of all x € X(Z,) reducing to a given x € X(Fp),
X(Z)y = X(Zp)x N X(Z).

u plu X Zp

3200 WBh — Uy =
[~ 1 7] I

Z, —== (2o ® Ty —— T D)y — T )iy «=— B

o (1)
» ry is constructed using +; and +; of P*

> ki Zy — 78" can be expressed in terms of p-adically convergent power series.



Parametrization of T(Z)

As a consequence, the maps U(Z,),) LN T(Zy)
of p-adically convergent power series

o (u) +~ 3(Z)o ® Z, induce maps of rings

A R e R Y L Zp(Yh,..., Yy,
b
and upon setting A =Z,(Y1,...,Y;)/I, I= (n*(Kerj;*)),
K1 (‘J’(Zp)fb(u) NU(Zp)u) corresponds to Hom(A, Z,).

Theorem (Edixhoven-Lido)
Assuming that A = A ® F,, is finite, one has

U(Z),| < dimg,A.

Example (Edixhoven-Lido)

[EL] use the method to explicitly determine C(Q) for a curve C with g =2,r=2,p = 2.
C = certain quotient of the modular curve X,(129); |C(Q)| = 14.



Geometric quadratic Chabauty over number fields

Let K/Q be a number field, [K: Q] =d =r; + 2r,.

Main obstacles in the number field case:
1. The class group Cl(K) = Pic(Ox) may prevent lifting Og-points and curves:

T T BT — T

I r ,’>( S r o

Iz 2

SpecOx —— U%H
b

Pic(U) — Pic(C) has an h-torsion kernel, h = |Pic(Ok)]

2. T(Ok) — J(Ok) has still too many points, namely
OF P71 ~ (torsion) x Z9P=1  § =r| 4+ ry — 1 in (trivial) fibres



Geometric quadratic Chabauty over number fields

Solution to 1 (for p = 2):
p*T T Pl
» - /ﬂ r
/ P
5
A (id; hm-otg;of;);
Spec Ok P J x gver-1

Let 7/ = (id, m- o t, o f;)} P*.
Then by the biextension law, one can show that
T = (id, hm- ot o f;);P* = (T)®",

p*:I _ (p*g-/)@)h

= p*7 is an h-th power of a torsor on Spec Ok, therefore trivial, i.e. s exists.



Geometric quadratic Chabauty over number fields

Solution to 2:
I(Ok)ox O U(Ok)u

(3(Oc)ox O 1) © Zy —= T(On)j

Parametrization includes action on fibers by a torsion-free part of
Gh N(Ok), OF 2 ~ 7301,

Key fact: The GP 1 -action on P*P~1ig expressible in terms of +;, +2 = Kz is still
expressible in terms of +1, 42, and p-adic interpolation still works.



Summary over number fields

» Fix integral models C,d, P*, U, ..., analogously

» Fix a rational prime p of good reduction, e(p;/p) <p —1 Vpi|p,
and work on “multiresidue disks”: fibers of

x(OK) - x(HOK,pi) - x(]:[ Fpi)

DC(OK) - H x(okﬂpi) - H x(Fpi)



Summary over number fields

» Parametrization of a “multiresidue” disk now takes the form:
3(Ok)o % O;’p ! W(Ok)u — W(Okplu = Okp

>~ [~ ]

o ]
00 3 (0@ x O © 2 3 TONy > TOxali € O

» Okp = [[; Ok, p; by a restriction of scalars procedure, or when p splits completely,
may view Ok, ~ Z1, then x becomes

. r+(p—1) d(g+p—1)
K}.Zp P —>Zpg P



Main result, Chabauty condition

Theorem (C., Lilienfeldt, Xiao, Yao)

Given a choice of “multiresidue” disks, there is an explicitely computable F,-algebra A such that,
assuming A is finite,

U(Ok)u| < dimg,A.

» Method expected to work when r + §(p — 1) < d(g+ p — 2), equivalently
r<(@-1)d+(p-1)(r2+1)

» agrees with [BBBM] (quadratic Chabauty /K, hyperelliptic curves) when p = 2
» Over Q, this gives r < g+ p — 2 - same as [EL], [BD]
» Siksek (linear Chabauty /K): condition r < (g — 1)d



Todo list (work in progress)

Question
What is a reasonable sufficient condition for the intersection T(Ox) N U(Okp) to be finite?
» in the K = Q case, assuming the quadratic Chabauty conditionr < g+ p — 2 is
enough (Edixhoven-Lido 2020)
» not expected to hold over K

Question
Assuming that T(Og) N W(Okp) is finite, does a suitable choice of a prime p lead to all the rings A
being finite?

» Examples!
» reprove some already done examples, e.g. [BBBM]

» Bring’s curve:
V+w+x+y+2z=0,
vz—&—wz—i—x2 —l—y2—|—z2 =0,
V4w x4y 427 =0



Thank you!
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