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I. Motivation & Background



Classical algebraic geometry – affine
Fix a field K. Let f1, f2, . . . , fm ∈ K[x1, x2, . . . , xn] be some polynomials.

I The affine variety X = V(f1, f2, . . . , fm) “is”

X ≡ X(K) = {P ∈ K
n

: fi(P) = 0 ∀i} ⊆ An(K) = K
n

(together with Zariski topology: a subset Z ⊂ X(K) is closed if Z = V(g1, . . . , gl) for
some g1, g2, . . . gl ∈ K[x1, x2, . . . , xn])

I In fact, for a field extension K ↪→ L, denote by X(L) the set of L-points of X,

X(L) = {P ∈ Ln : fi(P) = 0 ∀i}.

I In particular, X(K) is the set of K-rational points of X.

I Setting A = K[x]/(f), (or, better: A′ = K[x]/
√

(f)), there is a natural bijection

AlgK(A, L) ' X(L) ( and also AlgK(A′, L) ' X(L) ).

A′ is called the coordinate ring of X.



Classical algebraic geometry – projective

Fix a field K. Let f1, f2, . . . , fm ∈ K[x0, x1, . . . , xn] be some nonconstant homogeneous
polynomials: fi(λx) = λdi fi(x) where di = deg fi.

I For a field embedding K ↪→ L, set

Pn(L) = (Ln+1 \ {0})/ ∼, v ∼ λv ∀λ ∈ L ∀v ∈ Ln+1.

I The projective variety X = Vp(f1, f2, . . . , fm) determines its sets of L-points,

X(L) = {P = [x0 : x1 : · · · : xn] ∈ Pn(L) : fi(x0, x1, . . . , xn) = 0 ∀i} ⊆ Pn(L).

I In particular, X(K) is the set of K-rational points of X.
I We may again identify X ≡ X(K) as a subset of Pn(K), and endow it with the Zariski

topology, where closed subsets are (K-points of) projective subvarieties.
I A quasi-projective variety is an open subset U of a projective variety. It comes with a

ring of functions on U.



Diophantine equations and algebraic geometry (I)

Consider a system of diophantine equations

fi(x1, x2, . . . , xn) = 0, fi ∈ Z[x1, x2, . . . , xn], i = 1, 2, . . . ,m.

Suppose that fi’s are homogeneous. Then

solutions in Zn � solutions in Qn

Z · d
(

a1

b1
,

a2

b2
, . . . ,

an

bn

)
← [
(

a1

b1
,

a2

b2
, . . . ,

an

bn

)
d = lcm(b1, b2, . . . , bn).

⇒ Solutions correspond to rational points of the projective variety X = Vp(f1, f2, . . . , fm)

⇒ One can use geometry of X to describe the solutions.



Diophantine equations and algebraic geometry (I)

Example (Pythagorean triples)

x2 + y2 = z2, x, y, z ∈ Z

Then X = V(x2 + y2 − z2) is isomorphic to P1 :

P1 X

[t : v]
[
2tv : t2 − v2 : t2 + v2

]
[x : z− y] [x : y : z]

∼

The map P1 → X parametrizes X(Q) by P1(Q).



Analytifications

Assume that X is a smooth variety over K.
I If K ⊆ C, then X(C) is naturally a complex manifold - locally, it is isomorphic to unit

ball in Cm for some m.
I An analogue of this holds over other topological fields, such as

Qp =

{ ∞∑
i=−n

aipi | n ≥ 0, ai ∈ {0, 1, 2, . . . , p− 1}

}
,

whose topology is dictated by the norm∣∣∣∣∣
∞∑

i=−n

aipi

∣∣∣∣∣ := p−k, k smallest such that ak 6= 0

(more generally, may consider completion Kp of a number field K at a prime p).
I If K ⊆ Qp, then X(Qp) has a structure of a p-adic analytic manifold. Locally, it s

isomorphic to Zm
p for some m.



Smooth projective curves

I Algebraic curves are varieties of dimension 1.
I A curve is smooth if at every point, it has only one tangent line.

Example

Smooth curve, e.g.
y2 = x3 − x + 1

Not smooth - node, e.g.
y2 = x3 + x2

Not smooth - cusp, e.g.
y2 = x3



Smooth projective curves

Projective smooth curves are categorized by their genus:
I C is a smooth projective curve over K ⊆ C
⇒ C(C) is a compact complex manifold of dim = 1 (Riemann surface)
⇒ C(C) is a compact topological manifold of dim = 2.

I Classification theorem⇒ C(C) is a sphere with g handles attached.
I The genus of C = g :=the number of handles.

Example

Genus 1 curve Genus 2 curve



Line bundles and Gm–torsors

I A line bundle on a variety X is a variety L together with a map π : L→ X such that

∀U ⊆ X small enough open: (π−1(L)
π→ U) ' (U × A1 prU→ U)

(+ compatibility condition on the iso’s).
I Fibers of L over points of X are 1-dim. vector spaces, that “vary continuously”.
I An isomorphic copy of X sits in L, as the 0-elements in each fiber.
I A Gm-torsor L× is obtained from L by removing X from L. It retains the action of

nonzero scalars in fibres.



Picard variety
Assume that X is projective over K, char K = 0.
I Line bundles on X form a commutative group, under (L1, L2) 7→ L1 ⊗ L2. The

resulting group is Pic(X), the Picard group of X.
I Pic(X) itself has a geometric structure, and the connected component Pic0(X) of the

neutral element is called the Picard variety of X.
Pic0(X) is an Abelian variety = projective connected variety with group structure.

I NS(X) := Pic(X)/Pic0(X) is the Néron-Severi group. It is a fin-gen Abelian group.



Picard variety

Two important cases:

1. When X = C is a smooth projective curve, J := Pic0(C) is called the Jacobian of C.
I dim J = genus of C.

I Any ”choice of origin” b ∈ C(K) induces an embedding jb : C ↪→ J, called Abel–Jacobi map.

2. When X = A is an Abelian variety, A∨ := Pic0(A) is called the dual abelian variety of A.
I A∨∨ = A

I There are always isogenies A→ A∨,A∨ → A.

I If A = J is a Jacobian of a curve, the isogenies may be chosen as isomorphisms.



Diophantine equations and algebraic geometry (II)

I Want to “attach geometry” to general systems of diophantine equations.
I Given such a system,

fi(x) = 0, fi(x) ∈ Z[x1, x2, . . . , xn],(∗)

upon setting A = Z[x]/(f), one still has

AlgZ(A,Z)
1-1↔ solutions of (∗).

 need a geometric object for which A would be a “coordinate ring”.
I Such an object is the affine scheme X = Spec A:

I As a topological space, Spec A = {p ⊆ A | p is a prime ideal}, and closed sets are of the
form V(I) = {p | I ⊆ p} for any ideal I ⊆ A

I Given another affine scheme Y = Spec B, maps of schemes Y → X correspond precisely to

AlgZ(A, B) =: X(B),

the “B-valued points of X”.



Schemes (from bird’s-eye view)

I General schemes are spaces that are locally modelled by affine schemes.
I Given a scheme S, one can consider schemes over S (S-schemes)= morphisms of

schemes X → S. Morphism of S-schemes is a morphism of schemes compatible with
the structure maps to S.

I Any scheme is tautologically a scheme over SpecZ; given a field K, classical varieties
over K naturally correspond to certain schemes over Spec K.

I Given two S-schemes X, Y , the set of S-morphisms Y → X is sometimes denoted by
X(Y), and called the “set of Y-valued points of X”.

I Points are functorial in X and Y :

a morphism of S-schemes Y1 → Y2 induces a map X(Y2)→ X(Y1).
(X1 → X2, resp.) (X1(Y)→ X2(Y) resp.)



Schemes – examples

Example (Number fields)
K/Q finite extension (K = Q(

√
13) on picture).

Z ⊆ OK induces a map SpecOK → SpecZ, which is a cover of “curves” of degree [K : Q].
Fact: Pic (SpecOK) = Cl(K).



Schemes – examples

Example (integral models)
For a variety X/Q, one can consider various schemes X over Z such that X(R) = X(R) for
every Q-algebra R.
Upshot: Can consider points X(R) for R not necessarily over Q - e.g. X(Fp) or X(Fp).



Two key finiteness results

Theorem (Mordell–Weil Theorem; ’22, ’29)
Let A be an Abelian variety over a number field K. Then A(K) is a finitely generated group.

Theorem (Mordell’s conjecture; Faltings ’83)
Let C be a smooth, projective, geometrically connected curve of genus g ≥ 2 over a number field K.
Then C(K) is a finite set.

Questions of effectivity and explicit methods:
I How to algorithmically compute C(K)?
I How to produce sharp bound?
I How to make optimal bounds in families?
I . . .



II. Chabauty–Coleman & Beyond



Chabauty–Coleman

Let J denote the Jacobian of C. Denote r = rankZ J(K) its Mordell-Weil rank.

Theorem (Chabauty ’41)
If r ≤ g− 1 then |C(K)| is finite.

I first proof of special case of Mordell’s conjecture

Theorem (Coleman ’85)
Under the same assumption, fix an unramified prime p|p of good reduction such that p > 2g. Then

|C(K)| ≤ N(p) + 2g(
√

N(p) + 1)− 1.

I “good” bound on the size of |C(K)|
I Further improvements by Stoll (2006), Katz–Zurieck-Brown (2013),

Katz–Rabinoff–Zurieck-Brown (2016), . . .
I Siksek (2013): explicit Chabauty over number fields, method of Weil restriction



Chabauty–Coleman

Strategy:
Let b ∈ C(K) be a point, and jb : C ↪→ J the Abel–Jacobi map.

C(K) C(Kp)

J(K) J(K) J(Kp)

jb jb

Then C(K) ⊆ C(Kp) ∩ J(K).

C(Kp), J(K) are p-adic/p-adic manifolds of dimensions 1 and r′ ≤ r, resp., in the p-adic
manifold J(Kp) of dimension g > r′.



Chabauty–Coleman



Chabauty–Coleman

Strategy:

C(K) C(Kp)

J(K) J(K) J(Kp) H0(J,Ω1
JKp/Kp

)∨

jb jb

∫
log

log,
∫

are given by x 7→
∫ x

b (•), the Coleman integral. Let

V = {ω ∈ H0(J,Ω1
JKp/Kp

) |
∫ x

b ω = 0 ∀x ∈ J(K)}.

Then

C(Kp) ∩ J(K) ⊆ {x ∈ C(Kp) |
∫ x

b j∗bω = 0 ∀ω ∈ V} =: C(Kp)1.

If r′ < g, then V 6= 0 and it can be shown that C(Kp)1 is finite.



Chabauty–Coleman

Example (Hirakawa–Matsumura 2019)
Q: Can a rational right triangle and a rational isosceles triangle have the same area and
perimeter?

Upon setting up parameters for lengths of sides appropriately and simplifying, this leads
to the task of finding C(Q) for

C : y2 = x6 + 12x5 − 32x4 + 52x2 − 48x + 16.

A list of 10 points is

∞±, (0,±4), (1,±1), (2,±8), P± = (12/11,±868/113).

Only P+ corresponds to a pair of triangles.

Chabauty–Coleman bound⇒ |C(Q)| ≤ 10⇒ the list is complete.

The unique pair of triangles has sides (377, 135, 352) and (366, 366, 132), up to scaling.



Chabauty–Coleman

Problem when r′ = g :

 need to “extend the method beyond Jacobian”.



Chabauty-Kim program

Kim (2005, 2009)
Goal: Extend the method beyond the r < g case

C(K) C(Kp)

Sel(Un) H1
f (Kp,Un) πdR

1 (CKp
)n/Fil0

jn jn,p

∫
locp logn

Un = certain unipotent quotients of πet
1 (CK)

C(Kp)n = j−1
n,p(locp(Sel(Un)))

Conjecture (Kim)
For n >> 0, C(Kp)n is finite and coincides with C(K).



Quadratic Chabauty

I Case n = 2 of Kim’s program
I uses double Coleman integrals
I Balakrishnan-Dogra (2016, 2017) - quadratic Chabauty over Q
I Balakrishnan-Dogra-Müller-Tuitman-Vonk (2017)

- determined rational points of Xs(13), ”cursed curve”
- application to Serre’s uniformity problem

I Balakrishnan-Besser-Bianchi-Müller (2019)
- explicit quadratic Chabauty for hyperelliptic curves over number fields



II. Geometric quadratic Chabauty



Geometric quadratic Chabauty over Q

Edixhoven–Lido (2019)
Goal: Formulate quadratic Chabauty in terms of ”simple” geometry

C(Q) C(Qp)

J(Q) J(Qp) J(Qp)

T(Q) T(Q) T(Qp)

jb

j̃b

jb

j̃b

T is a certain Gρ−1
m -torsor on J, ρ = rank NS(J)

Problem: T(Q) has too many points (Q×,ρ−1 in fibers)



Geometric quadratic Chabauty over Q

Edixhoven–Lido (2019)
Goal: Formulate quadratic Chabauty in terms of ”simple” geometry

C(Z) C(Zp)

J(Z) J(Z) J(Zp)

T(Z) T(Z) T(Zp)

jb

j̃b

jb

j̃b

T is a certain Gρ−1
m -torsor on J,

J is the Néron model of J,
C is the smooth locus in a regular proper model of C.



Geometric quadratic Chabauty over Q



Poincaré biextension

Let P→ J × J∨ be the Poincaré line bundle:
I P|J×{x} = Lx, the line bundle corresponding to x ∈ J∨

I P|J×{0}, P|{0}×J∨ are trivial line bundles on J, J∨, resp.

Let P× be the associated Gm-torsor on J × J∨.
It has the structure of a Gm-biextension:

I There are partial operations
I +1 on all points over a point of the form (∗, y) ∈ J × J∨, making it a commutative group,
I +2 on all points over a point of the form (x, ∗) ∈ J × J∨, making it a commutative group,
I compatibility of the two operations:

(a +1 b) +2 (c +1 d) = (a +2 c) +1 (b +2 d)

whenever the above makes sense.



Poincaré biextension



Constructing T

From now on, assume that ρ = rank NS(J) = 2. We need a non-trivial Gm–torsor T such
that C lifts to T – equivalently, such that T|C is a trivial torsor over C.

Ker j∗b Ker j∗b

0 J∨ Pic(J) NS(J) 0

0 J Pic(C) Z 0

'

' j∗b j∗b

Then rank Ker j∗b = ρ− 1 = 1, so there is essentialy unique Gm-torsor on J that is trivial
over C ↪→ J. Moreover, it is of the form

T′ = (idJ, tc ◦ f)∗P×, f ∈ Hom(J, J∨)+, c ∈ J∨(Q).

That is, T′ is obtained by restricting the Poincaré torsor to a copy of J, embeded into
J × J∨ via (idJ, tc ◦ f) : J → J × J∨. For technical reasons we take T = (idJ,m· ◦ tc ◦ f)∗P×.



Constructing T

The Gm–torsor T on J is then given by

T = (idJ,m· ◦ tc ◦ f)∗P×

for the analogous embedding (idJ,m· ◦ tc ◦ f) : J→ J× J∨◦, where:

I J∨,◦ is a fiberwise connected component of J∨,
I P× is an integral model of P× as a Gm-biextension,
I m is an integer large enough to annihilate J∨/J∨◦.

The lift j̃b : C→ T does not exist globally anymore, but exists on certain open subschemes
U ⊆ C that are ”big enough” to jointly contain all Z-points.



Parametrization of T(Z)

I Work on residue disks:

X(Zp)x = set of all x̃ ∈ X(Zp) reducing to a given x ∈ X(Fp),

X(Z)x = X(Zp)x ∩ X(Z).

J(Z)0 U(Z)u U(Zp)u Zp

Zr
p J(Z)0 ⊗ Zp T(Z)j̃b(u)

T(Zp)j̃b(u)
Zg+1

p

κZ

'

' κ
'

I κZ is constructed using +1 and +2 of P×

I κ : Zr
p → Zg+1

p can be expressed in terms of p-adically convergent power series.



Parametrization of T(Z)

As a consequence, the maps U(Zp)u)
j̃b−→ T(Zp)j̃b(u)

κ←− J(Z)0 ⊗ Zp induce maps of rings
of p-adically convergent power series

Zp〈X1〉 Zp〈X1, . . . , Xg+1〉 Zp〈Y1, . . . , Yr〉,
j̃b
∗

κ∗

and upon setting A = Zp〈Y1, . . . , Yr〉/I, I = (κ∗(Ker j̃b
∗
)),

κ−1
(
T(Zp)j̃b(u)

∩ U(Zp)u
)

corresponds to Hom(A,Zp).

Theorem (Edixhoven–Lido)
Assuming that A = A⊗ Fp is finite, one has

|U(Z)u| ≤ dimFpA.

Example (Edixhoven–Lido)
[EL] use the method to explicitly determine C(Q) for a curve C with g = 2, r = 2, ρ = 2.
C = certain quotient of the modular curve X0(129); |C(Q)| = 14.



Geometric quadratic Chabauty over number fields

Let K/Q be a number field, [K : Q] = d = r1 + 2r2.

Main obstacles in the number field case:
1. The class group Cl(K) = Pic(OK) may prevent lifting OK-points and curves:

p∗T T j∗bT T

SpecOK J U J

p p

p

??

jb

?
?

Pic(U)→ Pic(C) has an h-torsion kernel, h = |Pic(OK)|

2. T(OK)→ J(OK) has still too many points, namely
O×,ρ−1

K ' (torsion)× Zδ(ρ−1), δ = r1 + r2 − 1 in (trivial) fibres



Geometric quadratic Chabauty over number fields

Solution to 1 (for ρ = 2):

p∗T T P×,ρ−1

SpecOK J J× J∨◦,ρ−1

p p

p

p̃
s

(id; hm·◦tci◦fi)i

Let T′ = (id, m· ◦ tci ◦ fi)∗i P
×.

Then by the biextension law, one can show that

T = (id, hm· ◦ tci ◦ fi)∗i P
× = (T′)⊗h,

p∗T = (p∗T′)⊗h

⇒ p∗T is an h-th power of a torsor on SpecOK, therefore trivial, i.e. s exists.



Geometric quadratic Chabauty over number fields

Solution to 2:
J(OK)0×O×,ρ−1

K,tf U(OK)u

(J(OK)0×O×,ρ−1
K,tf )⊗ Zp T(OK)j̃b(u)

κZ

κ

Parametrization includes action on fibers by a torsion-free part of
Gρ−1

m (OK), O×,ρ−1
K,tf ' Zδ(ρ−1).

Key fact: The Gρ−1
m -action on P×,ρ−1 is expressible in terms of +1,+2 ⇒ κZ is still

expressible in terms of +1,+2, and p-adic interpolation still works.



Summary over number fields

I Fix integral models C, J,P×,U, . . . , analogously
I Fix a rational prime p of good reduction, e(pi/p) < p− 1 ∀pi|p,

and work on ”multiresidue disks”: fibers of

X
(
OK) ⊆ X(

∏
i

OK,pi

)
→ X(

∏
i

Fpi

)
=

X
(
OK) ⊆

∏
i

X(OK,pi

)
→
∏

i

X(Fpi

)



Summary over number fields

I Parametrization of a ”multiresidue” disk now takes the form:

J(OK)0 ×O×,ρ−1
K,tf U(OK)u U(OK,p)u OK,p

Zr+δ(ρ−1)
p (J(Z)0 ×O×,ρ−1

K,tf )⊗ Zp T(OK)j̃b(u)
T(OK,p)j̃b(u)

Og+ρ−1
K,p

κZ

'

' κ
'

I OK,p =
∏

iOK,pi ; by a restriction of scalars procedure, or when p splits completely,
may view OK,p ' Zd

p, then κ becomes

κ : Zr+δ(ρ−1)
p → Zd(g+ρ−1)

p



Main result, Chabauty condition

Theorem (Č., Lilienfeldt, Xiao, Yao)
Given a choice of ”multiresidue” disks, there is an explicitely computable Fp-algebra A such that,
assuming A is finite,

|U(OK)u| ≤ dimFpA.

I Method expected to work when r + δ(ρ− 1) ≤ d(g + ρ− 2), equivalently

r ≤ (g− 1)d + (ρ− 1)(r2 + 1)

I agrees with [BBBM] (quadratic Chabauty /K, hyperelliptic curves) when ρ = 2
I Over Q, this gives r ≤ g + ρ− 2 - same as [EL], [BD]
I Siksek (linear Chabauty /K): condition r ≤ (g− 1)d



Todo list (work in progress)

Question
What is a reasonable sufficient condition for the intersection T(OK) ∩ U(OK,p) to be finite?

I in the K = Q case, assuming the quadratic Chabauty condition r ≤ g + ρ− 2 is
enough (Edixhoven–Lido 2020)

I not expected to hold over K

Question
Assuming that T(OK) ∩U(OK,p) is finite, does a suitable choice of a prime p lead to all the rings A
being finite?

I Examples!
I reprove some already done examples, e.g. [BBBM]
I Bring’s curve:

v + w + x + y + z = 0,

v2 + w2 + x2 + y2 + z2 = 0,

v3 + w3 + x3 + y3 + z3 = 0



Thank you!
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