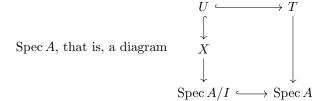
Cech complex for crystalline cohomology

Pavel Coupek

The purpose of this note is to give a proof of the remark [Sta20, 07MM] about Čech–theoretic computation of crystalline cohomology.

Let X be a separated Noetherian scheme over A/I for a dp- $\mathbb{Z}_{(p)}$ -algebra (A, I, γ) , such that p is nilpotent on X. Recall that the small crystalline site Cris(X/A) is given by:

• Objects: Divided power thickenings (U, T, δ) of X relative to (A, I, γ) , that is, the datum of a closed immersion $U \hookrightarrow T$ inducing homeomorphism of underlying topological spaces, such that the associated ideal sheaf \mathcal{I} is endowed with the dp-structure δ , together with a morphism $T \to \operatorname{Spec} A$ of divided power schemes, and an open immersion $U \to X$ over



- Morphisms: Divided power morphisms $(U, T, \delta) \to (U', T', \delta')$, making everything commutative.
- topology: Zariski topology, i.e. cover of (U, T, δ) is given by $\{(U_i, T_i, \delta_i) \to (U, T, \delta)\}$, where $T_i \to T$ are open immersions $(U_i \to U$ are open immersions automatically), making everything commutative.

For an affine open $V \subseteq X$, denote by h_V the functor that sends an object $(U, T, \delta) \in Cris(X/A)$ to the set of factorizations of the implicit map $U \hookrightarrow X$ through $V \subseteq U$, that is,

$$h_V((U,T,\delta)) = \begin{cases} * & \text{if } U \hookrightarrow X \text{ has image contained in } V, \\ \emptyset & \text{otherwise.} \end{cases}$$

When $(U, T, \delta) \to (U', T', \delta')$ is a morphism in Cris(X/A) and $U' \hookrightarrow X$ factors through V, then so does $U \hookrightarrow X$. Thus, the map $h_V((U', T', \delta')) \to h_V((U, T, \delta))$ is well-defined, and h_V is thus a presheaf of sets on Cris(X/A).

Proposition 0.1. The presheaf h_V is a sheaf.

Proof. Let $\{(U_i, T_i, \delta_i) \to (U, T, \delta)\}_i$ be a cover. We need to check that the sequence

$$h_V((U,T,\delta)) \to \prod_i h_V((U_i,T_i,\delta_i)) \Longrightarrow \prod_{i,j} h_V((U_i,T_i,\delta_i) \times_{(U,T,\delta)} (U_j,T_j,\delta_j))$$

is an equalizer sequence. Given the fact that the two terms on the right have at most one element, only two things can happen:

- (A) $\prod_i h_V((U_i, T_i, \delta_i)) = \emptyset$. Then there is nothing to check, as then $h_V((U, T, \delta)) = \emptyset$ automatically since it maps into the empty set, and the equalizer condition is trivially satisfied.
- (B) $\prod_i h_V((U_i, T_i, \delta_i)) \neq \emptyset$. Then the term on the right-hand side is also nonempty. In this case, both are one-element sets, and the maps on the right are thus necessarily the same. Therefore we need to check that $h_V((U, T, \delta))$ is also nonempty, then the sequence above will be an equalizer sequence again trivially. In this case, we know that U_i are subsets of V (via $U_i \hookrightarrow X$) and since they cover U (also viewed as a subset of X via $U \hookrightarrow X$), it follows that U is also a subset of X. Thus, $h_V((U, T, \delta)) \neq \emptyset$, and we are done.

Clearly h_X is the final sheaf of Sh(Cris(X/A)). Let $V = \operatorname{Spec} C \subseteq X$ be an affine open subset, and choose a surjective map

$$0 \to J_V \to P_V \to C \to 0$$

where P_V is a free A-algebra. Let (D_V, I_V, δ) be the pd-envelope of (P_V, J_V) . For $e \geq 1$ we define $D_{V;e} = D_V/p^e D_V$. Then, for all e sufficiently large, $(D_{V;e}, I_{V;e}, \delta)$ naturally defines an object (V, S_e, δ) of Cris(X/A) (and of Cris(V/A)), [Sta20, 07KG].

We define the sheaf \mathcal{C}_V by the formula

$$\mathcal{C}_{V}((U,T,\delta)) = \varinjlim_{e} \operatorname{Hom}_{Cris(X/A)}((U,T,\delta),(V,S_{e},\delta)).$$

Remark 0.2. 1. The meaning of the definition is that the sheaf C_V is the sheaf represented by the object given by the dp-ring

$$\widehat{D}_V := \varprojlim_e D_{V;e}, \quad \widehat{I}_V = \operatorname{Im}\left(\varprojlim_e I_{V;e} \to \widehat{D}_V\right).$$

The only obstacle is that such a triple $(\hat{D}_V, \hat{I}_V, \delta)$ is, strictly speaking, not an object of Cris(X/A) since the map $\hat{D}_V \to \hat{D}_V/\hat{I}_V$ is not a thickening (but rather a pro-thickening) and p is not nilpotent on \hat{D}_V (only topologically nilpotent). However, ignoring this issue, it is clear that for an affine object (U, T, δ) of Cris(X/A), corresponding to the dp-algebra (B, J, δ) where p is nilpotent, each morphism $(\hat{D}_V, \hat{I}_V, \delta) \to (B, J, \delta)$ factors through $(D_{V;e}, I_{V;e}, \delta)$ for some sufficiently large e. Taking $e' \geq e$, these factorizations are compatible, which leads to the formula above.

2. It is clear that C_V is "extended by \emptyset " from a sheaf on Cris(V/A) in the following sense: There is the sheaf C'_V on Cris(V/A) defined analogously, i.e. by the formula

$$\mathcal{C}'_{V}((U,T,\delta)) = \varinjlim_{e} \operatorname{Hom}_{Cris(V/A)}((U,T,\delta),(V,S_{e},\delta)).$$

Then we have, for any $(U, T, \delta) \in Cris(X/A)$,

$$\mathcal{C}_{V}((U,T,\delta)) = \begin{cases} \mathcal{C}'_{V}((U,T,\delta)) & \text{if } U \subseteq V \text{ (hence } (U,T,\delta) \in Cris(V/A) \text{)}, \\ \emptyset & \text{else.} \end{cases}$$

The symbol lim in the preceding formulas is meant as a filtered colimit operation of presheaves, i.e. computed objectwise. It is therefore important to observe that in the situation at hand, such colimit presheaves are actually sheaves.

Proposition 0.3. (1) The presheaf C_V is a sheaf on Cris(X/A).

(2) $\mathcal{C}_V \to h_V$ is an epimorphism of sheaves.

Proof. Let $\{(U_i, T_i, \delta) \to (U, T, \delta)\}_i$ be a cover in Cris(X/A). As X is assumed Noetherian, U and T are quasi-compact and hence $p^e = 0$ on T for some sufficiently large e. Since $T_i \hookrightarrow T$ are open immersions, $p^e = 0$ on all T_i 's and hence on all U_i 's. By the same reasoning, the same is true also for all the schemes appearing in the covers $\{(U_{i,i'}, T_{i,i'}, \delta) \to (U_i, T_i, \delta)\}_{i'}$ where $(U_{i,i'}, T_{i,i'}, \delta) := (U_{i'}, T_{i'}, \delta) \times_{(U,T,\delta)} (U_i, T_i, \delta)$. Thus, the sequence for verifying the sheaf axiom

$$\mathcal{C}_V((U,T,\delta)) \to \prod_i \mathcal{C}_V((U_i,T_i,\delta)) \Longrightarrow \prod_{i,i'} \mathcal{C}_V((U_{i,i'},T_{i,i'},\delta))$$

is naturally identified with

$$\operatorname{Hom}((U,T,\delta),(V,S_e,\delta)) \to \prod_i \operatorname{Hom}((U_i,T_i,\delta),(V,S_e,\delta)) \rightrightarrows \prod_{i,i'} \operatorname{Hom}((U_{i,i'},T_{i,i'},\delta),(V,S_e,\delta)).$$

Since the functor $\operatorname{Hom}(-, (V, S_e, \delta))$ is a sheaf, the latter sequence is an equalizer sequence, hence the former is as well. This proves (1).

Proving (2) amounts to showing that whenever (U, T, δ) has $U \subseteq V$ (so that $h_V((U, T, \delta)) =$ $* \neq \emptyset$, there exists a morphism $(U, T, \delta) \rightarrow (V, S_e, \delta)$ in Cris(X/A), for some $e \geq 1$ sufficiently large. We may additionally assume that (U, T, δ) is affine, given by a dp-algebra (B, J, δ) . In that case, there is (by definition) a map $P_V \twoheadrightarrow P_V/J_V \simeq C \to B/J$ which admits a lift to $P_V \to B$ since P_V is free. The resulting map of pairs $(P_V, J_V) \to (B, J)$ then induces a morphism of dp-algebras $(D_V, I_V, \delta) \to (B, J, \delta)$ by the universal property of pd-envelopes. Finally, one can take e large enough such that $p^e = 0$ in B. Then the above map factors through a map $(D_{V:e}, I_{V:e}, \delta) \to (B, J, \delta)$, corresponding to the morphism $(U, T, \delta) \to (V, S_e, \delta)$, as desired. \Box

Now let us choose a (finite) affine open cover $X = \bigcup_{i} V_{j}$. For each $n \geq 1$ and each (j_1, j_2, \ldots, j_n) , denote $V_{j_1} \cap \cdots \cap V_{j_n} = V_{j_1, \ldots, j_n} = \operatorname{Spec} C_{j_1, \ldots, j_n}$. Note that, assuming a good choice of the free algebras P_V in the definition of the complexes

 \mathcal{C}_V , one has

$$\mathcal{C}_{V_{j_1}} \times \mathcal{C}_{V_{j_2}} \times \cdots \times \mathcal{C}_{V_{j_n}} = \mathcal{C}_{V_{j_1,j_2,\dots,j_n}}.$$

Proposition 0.4. Given an affine open cover $X = \bigcup_j V_j$, the map $\coprod_j h_{V_j} \to h_X = *$ to the final object is surjective. Consequently, the map $\coprod_i \mathcal{C}_{V_i} \to h_X = *$ is surjective.

Proof. The "consequently" part follows thanks to Proposition 0.3 (2).

To prove the main statement, it is enough to show that for every object (U, T, δ) there exists a cover $\{(U_i, T_i, \delta_i) \to (U, T, \delta)\}$ such that $\coprod_{j}^{pre} h_{V_j}((U_i, T_i, \delta_i)) \neq \emptyset$, where \coprod_{j}^{pre} denotes the coproduct as presheaves. Identifying U with the corresponding subset of X, the dp-thickenings

$$(U \cap V_j, T \cap V_j, \delta)$$

make sense $(T \cap V_i)$ denotes the open subscheme of T whose set of points corresponds, under the homeomorphism $U \to T$, to $U \cap V_i$), and naturally defines an object of Cris(X/A). It is then easy to see that $\{(U \cap V_i, T \cap V_i, \delta) \to (U, T, \delta)\}_i$ is the desired cover, with $h_{V_i}((U \cap V_i, T \cap V_i))$ $V_i, \delta) \neq \emptyset.$

Recall the following notation: Let C be a site and assume that its topology is subcanonical (i.e. all representable presheaves are sheaves). Recall that, when \mathcal{K} is a sheaf of sets on C, the left exact functor (from the category of abelian sheaves on C to the category of abelian groups)

$$\Gamma(\mathcal{K}, -) : \mathcal{F} \mapsto \Gamma(\mathcal{K}, \mathcal{F}) = \operatorname{Hom}_{Shv(\mathsf{C})}(\mathcal{K}, \mathcal{F})$$

is left exact, has a right derived functor $\mathsf{R}\Gamma(\mathcal{K}, -)$, and we denote by $H^i(\mathcal{K}, \mathcal{F})$ the *i*-th cohomology group of $\mathsf{R}\Gamma(\mathcal{K},\mathcal{F})$. When $\mathcal{K} = h_A$ is a represented sheaf, we write $H^i(A,\mathcal{F}) = H^i(h_A,\mathcal{F})$. On the other hand, when $\mathcal{K} = *$ is the final sheaf, we have $H^i(\mathcal{K}, \mathcal{F}) = H^i(\mathcal{C}, \mathcal{F})$.

The following vanishing is crucial for our Čech-style computation.

Lemma 0.5. Let \mathcal{F} be a crystal in quasi-coherent $\mathcal{O}_{X/A}$ -modules on Cris(X/A), and let $V \subseteq X$ be an affine open subset. Then $H^q(\mathcal{C}_V, \mathcal{F}) = 0$ for all q > 0.

Proof. We have, functorially in \mathcal{F} ,

$$\Gamma(\mathcal{C}_V, \mathcal{F}) = \operatorname{Hom}_{Shv}(\varinjlim_e h_{(V, S_e, \delta)}, \mathcal{F}) = \varprojlim_e \operatorname{Hom}_{Shv}(h_{(V, S_e, \delta)}, \mathcal{F}) = \varprojlim_e \mathcal{F}((V, S_e, \delta)),$$

so that $\Gamma(\mathcal{C}_V, -)$ factors as

$$Shv(Cris(X/A)) \xrightarrow{\{\Gamma((V,S_e,\delta),-)\}_e} \operatorname{Ab}^{(\mathbb{N},\geq)} \xrightarrow{\lim} \operatorname{Ab},$$

hence

$$\mathsf{R}\Gamma(\mathcal{C}_V,-) = \left(\mathsf{R}\varprojlim_e\right) \circ \left(\mathsf{R}\{\Gamma((V,S_e,\delta),-)\}_e\right)$$

By [Sta20, 07JJ], we have $H^i((V, S_e, \delta), \mathcal{F}) = 0$ for all i > 0 and every $e \ge 1$, that is, for an injective resolution $0 \to \mathcal{F} \to \mathcal{E}^{\bullet}$, the compex $\Gamma((V, S_e, \delta), \mathcal{E}^{\bullet})$, which represents $\mathsf{R}\Gamma((V, S_e, \delta), \mathcal{F})$, is acyclic in nonzero degrees. Since $\mathsf{R}\{\Gamma(V, S_e, \delta), -)\}_e(\mathcal{F})$ is represented by the inverse system

$$\Gamma((V, S_1, \delta), \mathcal{E}^{\bullet}) \leftarrow \Gamma((V, S_2, \delta), \mathcal{E}^{\bullet}) \leftarrow \Gamma((V, S_3, \delta), \mathcal{E}^{\bullet}) \leftarrow \dots$$

(interpreted as a chain complex of inverse systems in the obvious manner), the same follows for $\mathsf{R}\{\Gamma(V, S_e, \delta), -\}_e(\mathcal{F})$, i.e. it is concentrated in degree 0 and hence (quasi-)isomophic to the inverse system $\{\Gamma((V, S_e, \delta), \mathcal{F})\}_e$. Since \mathcal{F} is a crystal in quasi-coherent $\mathcal{O}_{X/A}$ -modules, this inverse system has all the transition maps surjective, hence the system is Mittag-Leffler. It follows that $\underline{\lim}_{e} \Gamma((V, S_{e}, \delta), \mathcal{F}) = 0$, that is, $\mathsf{R} \underline{\lim}_{e} \{ \Gamma((V, S_{e}, \delta), \mathcal{F}) \}_{e}$ is again concentrated in degree zero and hence (quasi-)isomorphic to $\lim_{t \to \infty} \Gamma((V, S_e, \delta), \mathcal{F}) = \Gamma(\mathcal{C}_V, \mathcal{F}).$

Thus, we have verified that $\mathsf{R}\Gamma(\mathcal{C}_V,\mathcal{F})$ is concentrated in degree 0, which proves the claim.

Finally, we put all the pieces above together.

Proposition 0.6. Let \mathcal{F} be a crystal in quasi-coherent $\mathcal{O}_{X/A}$ -modules on Cris(X/A). Then the cohomologies $H^i(Cris(X/A), \mathcal{F})$ can be computed using the Čech complex

$$(*) \quad 0 \to \prod_{j} \Gamma(\mathcal{C}_{V_{j}}, \mathcal{F}) \to \prod_{j_{1}, j_{2}} \Gamma(\mathcal{C}_{V_{j_{1}, j_{2}}}, \mathcal{F}) \to \dots$$

Proof. By Lemma 0.4, the epimorphism of sheaves $\coprod_j \mathcal{C}_{V_j} \to *$ is an epimorphism. By [Sta20, 079Z], it follows that there is a spectral sequence with E_1 -page

$$E_1^{p,q} = H^q\Big(\Big(\coprod_j \mathcal{C}_{V_j}\Big)^{\times p}, \mathcal{F}\Big) = H^q\Big(\coprod_{j_1, j_2, \dots, j_p} \mathcal{C}_{V_{j_1, \dots, j_p}}, \mathcal{F}\Big) = \prod_{j_i, \dots, j_p} H^q(\mathcal{C}_{V_{j_1, \dots, j_p}}, \mathcal{F})$$

converging to $H^{p+q}(*, \mathcal{F}) = H^{p+q}(Cris(X/A), \mathcal{F}).$

By Lemma 0.5, $H^q(\mathcal{C}_{V_{j_1,\ldots,j_n}},\mathcal{F}) = 0$ for every q > 0 and every n-tuple of indeces j_1,\ldots,j_n . The first page of the spectral sequence is thus concentrated in a single row of the form (*), and so the spectral sequence collapses on the second page. This proves the claim.

References

.

[Sta20] The Stacks Project Authors, Stacks project, available online at http://stacks.math. columbia.edu, 2020.