Existence and uniqueness of solution of linear diff. equation

If $a_{1}(t), a_{2}(t), \ldots a_{n}(t), g(t)$ are continuous (real-valued) functions on some interval (a, b) containing t_{0}, then an initial value problem of the form

$$
y^{(n)}+a_{1}(t) y^{(n-1)}+\cdots+a_{n-1}(t) y^{\prime}+a_{n}(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(t_{0}\right)=y_{n-1}
$$

has a unique solution on (a, b).
Example 1 Find the largest interval on which the initial value problem

$$
y^{\prime \prime \prime}+\sqrt{t-3} y^{\prime}+y=\cos (t), \quad y(5)=1, y^{\prime}(5)=1, y^{\prime \prime}(5)=0
$$

has a unique solution guaranteed by the existence and uniqueness theorem.

Solution: The coefficient functions are $0\left(\right.$ by $\left.y^{\prime \prime}\right), \sqrt{t-3}, 1$ and $\cos (t)$. All of them are continusous wherever they are defined, and all of them are defined on the full real line except for $\sqrt{t-3}$, whose domain is $[3, \infty)$. Therefore the biggest interval for which the theorem guarantees existence and uniqueness is $(3, \infty)$ (note that we are taking the open interval, i.e. excluding the endpoint 3 , since the theorem considers open intervals only).

Example 2 (more or less the one from class): Find the largest interval on which the initial value problem

$$
\left(t^{2}-3 t+2\right) y^{\prime \prime}+2 t y^{\prime}+3 y=\frac{1}{t+4}, \quad y(0)=3, y^{\prime}(0)=1
$$

has a unique solution guaranteed by the existence and uniqueness theorem.
Solution: To apply the above theorem, we need to get rid of the coefficient by $y^{\prime \prime}$. Thus, we divide the equation by $\left(t^{2}-3 t+2\right)$ and obtain

$$
y^{\prime \prime}+\frac{2 t}{t^{2}-3 t+2} y^{\prime}+\frac{3}{t^{2}-3 t+2} y=\frac{1}{(t+4)\left(t^{2}+3 t+2\right)}
$$

Now the points where one or more of the coefficient functions is discontinuous are $t=-4,1,2$ (since 1,2 are roots of $t^{2}-3 t+2$). The biggest interval that contains 0 and on which all the coefficient functions are continuous is thus $(-4,1)$.

Example 3 Find the largest interval on which the initial value problem

$$
t y^{\prime \prime}+\sqrt{t-3} y^{\prime}+(t+2) y=4 t, \quad y(0)=1, y^{\prime}(0)=1
$$

has a unique solution guaranteed by the existence and uniqueness theorem.
Solution: Again, first we have to divide by t to make the coefficient at $y^{\prime \prime}$ to be 1. We obtain the equation

$$
y^{\prime \prime}+\frac{\sqrt{t-3}}{t} y^{\prime}+\frac{t+2}{t} y=4
$$

and so we see that the coefficient functions $\frac{\sqrt{t-3}}{t}, \frac{t+2}{t}$ are discontinuous at 0 . Thus, the coefficient functions are not continuous in any interval containing 0 , so in this case, the uniqueness and existence theorem does not tell us anything (we cannot make any conclusion about the existence and uniqueness).

