Quiz 1 Solution

1. Find all m such that the function $\varphi(x)=x^{m}$ is a solution to the equation

$$
5 x^{2} \frac{\mathrm{~d}^{2} y}{(\mathrm{~d} x)^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{4}{5} y=0
$$

Solution: For $y=x^{m}$ we have

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=m x^{m-1}, \quad \frac{\mathrm{~d}^{2} y}{(\mathrm{~d} x)^{2}}=m(m-1) x^{m-2}
$$

so plugging into the diff. equation yields

$$
\begin{aligned}
5 x^{2} \cdot m(m-1) x^{m-2}+x \cdot m x^{m-1}+\frac{4}{5} x^{m} & =0 \\
5 m(m-1) x^{m}+m x^{m}+\frac{4}{5} x^{m} & =0 \\
5 m(m-1)+m+\frac{4}{5} & =0 \\
5 m^{2}-4 m+\frac{4}{5} & =0
\end{aligned}
$$

The discriminant of the resulting quadratic equation is 0 , and so the unique solution to this equation is

$$
m=\frac{4 \pm \sqrt{0}}{2 \cdot 5}=\frac{2}{5}
$$

Therefore the desired exponent m is $m=2 / 5$.
2. Find all solutions (in implicit or explicit form) of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 e^{-y} x^{2}
$$

Solution: This is a separable equation, so we separate the variables:

$$
\begin{array}{r}
e^{y} \mathrm{~d} y=3 x^{2} \mathrm{~d} x \\
\int e^{y} \mathrm{~d} y=\int 3 x^{2} \mathrm{~d} x \\
e^{y}=x^{3}+C
\end{array}
$$

where C is any constant. This describes all the solutions implicitely. For explicit form, we may solve for y :

$$
y=\ln \left(e^{y}\right)=\ln \left(x^{3}+C\right), \quad C \in \mathbb{R}
$$

(The maximal domain of these solutions is $(-\sqrt[3]{C}, \infty)$.)

