
Quiz 1 Solution

1. Find all m such that the function ϕ(x) = xm is a solution to the equation
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Solution: For y = xm we have
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so plugging into the diff. equation yields
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The discriminant of the resulting quadratic equation is 0, and so the unique solution to this equation is

m =
4±
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Therefore the desired exponent m is m = 2/5.

2. Find all solutions (in implicit or explicit form) of the differential equation

dy

dx
= 3e−yx2 .

Solution: This is a separable equation, so we separate the variables:

eydy = 3x2dx∫
eydy =

∫
3x2dx

ey = x3 + C,

where C is any constant. This describes all the solutions implicitely. For explicit form, we may solve for
y:

y = ln(ey) = ln(x3 + C), C ∈ R.

(The maximal domain of these solutions is (− 3
√
C,∞). )
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