Quiz 10 Solution

1. Find the general solution to the equation (using variation of parameters)

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{t}}{t}
$$

Solution: The auxiliary equation for

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

is

$$
\begin{aligned}
\lambda^{2}-2 \lambda+1 & =0 \\
(\lambda-1)^{2} & =0
\end{aligned}
$$

and so we have one double root $\lambda_{1}=\lambda_{2}=1$.
Thus, the general solution to the homogeneous equation is of the form

$$
y_{h}=c_{1} e^{t}+c_{2} t e^{t}
$$

To obtain a particular solution, we seek a solution in the from

$$
y_{p}=v_{1} e^{t}+v_{2} t e^{t}
$$

To determine v_{1}, v_{2}, we have to solve the system

$$
\begin{aligned}
v_{1}^{\prime} e^{t}+v_{2}^{\prime} t e^{t} & =0 \\
v_{1}^{\prime} e^{t}+v_{2}^{\prime}\left(e^{t}+t e^{t}\right) & =\frac{e^{t}}{t}
\end{aligned}
$$

Subtracting the first equation from the second yields

$$
\begin{aligned}
v_{2}^{\prime} e^{t} & =\frac{e^{t}}{t} \\
v_{2}^{\prime} & =\frac{1}{t}
\end{aligned}
$$

hence

$$
v_{2}=\int \frac{\mathrm{d} t}{t}=\ln t
$$

and plugging v_{2}^{\prime} back into the first equation yields

$$
\begin{aligned}
v_{1}^{\prime} e^{t}+\frac{1}{t}\left(t e^{t}\right) & =0 \\
v_{1}^{\prime} & =-1
\end{aligned}
$$

So

$$
v_{1}=\int(-1) \mathrm{d} t=-t
$$

Thus, the obtained particular solution is of the form

$$
y_{p}=(-t) e^{t}+t \ln (t) e^{t}
$$

and the general solution is

$$
y=y_{p}+y_{h}=(-t) e^{t}+t \ln (t) e^{t}+c_{1} e^{t}+c_{2} t e^{t}=c_{1} e^{t}+c_{2} t e^{t}+t \ln (t) e^{t}
$$

(where the constant c_{2} changed slightly in the last equality, but remained still a general constant).

