Quiz 11 Solution

1. Find the general solution to the equation

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=3 e^{-t}
$$

Solution: The auxiliary equation for

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=0
$$

is

$$
\begin{aligned}
\lambda^{3}-3 \lambda^{2}+2 \lambda & =0 \\
\lambda(\lambda-1)(\lambda-2) & =0
\end{aligned}
$$

and so we have roots $\lambda_{1}=0, \lambda_{2}=1, \lambda_{3}=2$,
Thus, the general solution to the homogeneous equation is of the form

$$
y_{h}=c_{1}+c_{2} e^{t}+c_{3} e^{2 t}
$$

To obtain a particular solution by the method of undetermined coefficients, we therefore seek a solution in the from

$$
y_{p}=A e^{-t}
$$

(Note that none of the roots matches the coefficient in the exponential e^{-t}, which is -1 . Therefore the above form of particular solution should indeed work.)

To determine A we plug the expression into the original equation: we have $y_{p}^{\prime}=-A e^{-t}, y_{p}^{\prime \prime}=$ $A e^{-t}, y_{p}^{\prime \prime \prime}=-A e^{-t}$ and so we obtain

$$
\begin{aligned}
-A e^{-t}-3 A e^{-t}-2 A e^{-t} & =3 e^{-t} \\
-6 A e^{-t} & =3 e^{-t} \\
-6 A & =3
\end{aligned}
$$

Therefore, $A=-1 / 2$, and the general solution to the equation is thus of the form

$$
y=y_{h}+y_{p}=c_{1}+c_{2} e^{t}+c_{3} e^{2 t}-\frac{1}{2} e^{-t} .
$$

