Quiz 12 Solution

1. Compute the Wronskian of the vector functions

$$
\mathbf{x}_{1}(t)=\left[\begin{array}{l}
1 \\
t
\end{array}\right], \mathbf{x}_{2}(t)=\left[\begin{array}{l}
t^{2} \\
t^{3}
\end{array}\right]
$$

Solution:

$$
W\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left|\begin{array}{ll}
1 & t^{2} \\
t & t^{3}
\end{array}\right|=t^{3}-t^{3}=0
$$

(Note: You may check that $\mathbf{x}_{1}, \mathbf{x}_{2}$ are in fact linearly independent even though the Wronskian vanishes everywhere. The point is that $\mathbf{x}_{2}=t^{2} \cdot \mathbf{x}_{1}$, so for any fixed value of $t, \mathbf{x}_{2}(t)$ is a scalar multiple of $\mathbf{x}_{1}(t)$, however, the scalar changes as t changes, so as vector functions, \mathbf{x}_{2} is not a scalar multiple of \mathbf{x}_{1}.)
2. Determine whether the vector functions

$$
\mathbf{x}_{1}(t)=\left[\begin{array}{c}
\cos (t) \\
t^{3}+1 \\
\sin (t)
\end{array}\right], \mathbf{x}_{2}(t)=\left[\begin{array}{c}
0 \\
t^{2}-t \\
0
\end{array}\right], \mathbf{x}_{3}(t)=\left[\begin{array}{c}
-\sin (t) \\
e^{t} \\
\cos (t)
\end{array}\right]
$$

are linearly independent as vector functions on $(-\infty, \infty)$.
Solution: Again, we compute the Wronskian
$W\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)=\left|\begin{array}{ccc}\cos (t) & 0 & -\sin (t) \\ t^{3}+1 & t^{2}-t & e^{t} \\ \sin (t) & 0 & \cos (t)\end{array}\right|=\left(t^{2}-t\right)\left|\begin{array}{cc}\cos (t) & -\sin (t) \\ \sin (t) & \cos (t)\end{array}\right|=\left(t^{2}-t\right)\left(\cos ^{2}(t)+\sin ^{2}(t)\right)=t^{2}-t$.
For $t \neq 0,1$, the Wronskian is nonzero, so it certainly attains a nonzero value at least at some point. Thus, the vector functions $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ are linearly independent.

