Quiz 2 Solution

1. Find the general solution to the equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=y+x e^{x} .
$$

Solution: The equation is a linear differential equation. We rewrite it to its standard form,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-y=x e^{x},
$$

and solve by the method of integrating factors. The integrating factor is

$$
\mu(x)=e^{\int(-1) \mathrm{d} x}=e^{-x},
$$

and so the solution is given by

$$
y=\frac{\int \mu(x) x e^{x} \mathrm{~d} x}{\mu(x)}=\frac{\int e^{x}\left(x e^{x}\right) \mathrm{d} x}{e^{-x}}=e^{x}\left(\int x \mathrm{~d} x\right)=e^{x}\left(\frac{x^{2}}{2}+C\right)=\frac{x^{2} e^{x}}{2}+C e^{x},
$$

where C is an arbitrary constant.
2. Determine whether the equation

$$
\left(3 x^{2} y-e^{x y}\right) \mathrm{d} x+\left(x^{3}-e^{x y}\right) \mathrm{d} y=0
$$

is exact, and if it is, solve it.
Solution: We apply the test for exactness, i.e. compute $\frac{\partial}{\partial y}\left(3 x^{2} y-e^{x y}\right), \frac{\partial}{\partial x}\left(x^{3}-e^{x y}\right)$ and compare them. We have

$$
\begin{aligned}
\frac{\partial}{\partial y}\left(3 x^{2} y-e^{x y}\right) & =3 x^{2}-x e^{x y} \\
\frac{\partial}{\partial x}\left(x^{3}-e^{x y}\right) & =3 x^{2}-y e^{x y}
\end{aligned}
$$

These two are not equal, so the equation is not exact.

