Quiz 3 Solution

1. An object of mass 1 kg is dropped into the air. The air resistance force (in Newtons) is $-5 v$ where v is the velocity of the object, the acceleration due to gravity is assumed to be $10 \mathrm{~m} / \mathrm{sec}^{2}$. Determine the equation of the motion of the object (i.e. the equation describing the position $x(t)$).

Solution: The equation from Newton's law of motion has in this case the form

$$
m \frac{\mathrm{~d} v}{\mathrm{~d} t}=m g-5 v
$$

(where $m g$ is the fore due to gravity and $-5 v$ is the force of air resistance given in the problem statement). Plugging in $m=1 \mathrm{~kg}$ and $g=10 \mathrm{~m} / \mathrm{sec}^{2}$ yields the linear differential equation

$$
\begin{array}{r}
\frac{\mathrm{d} v}{\mathrm{~d} t}=10-5 v \\
\frac{\mathrm{~d} v}{\mathrm{~d} t}+5 v=10
\end{array}
$$

We can solve this either by separation of variables, or by integrating factor method. Let us do it by integrating factor. The factor is

$$
\mu(t)=e^{\int 5 \mathrm{~d} t}=e^{5 t}
$$

so the solution v of the equation is

$$
v(t)=\frac{\int 10 e^{5 t} \mathrm{~d} t}{e^{5 t}}=\left(2 e^{5 t}+C\right) e^{-5 t}=2+C e^{-5 t}
$$

Plugging in the initial condition $v(0)=0$ (meaning that at the beginning of the fall, the velocity of the dropped object is 0) yields $C=-2$. Thus,

$$
v(t)=2-2 e^{-5 t}
$$

To get the equation of the motion, i.e. to determine te position function $x(t)$, we integrate the velocity with respect to time, i.e.

$$
x(t)=\int_{0}^{t} v(s) \mathrm{d} s=\int_{0}^{t}\left(2-2 e^{-5 s}\right) \mathrm{d} s=\left[2 s+\frac{2}{5} e^{-5 s}\right]_{0}^{t}=2 t+\frac{2}{5} e^{-5 t}-\frac{2}{5} .
$$

(Remark: The usage of definite integration in the form as above corresponds to the choice of initial position to be $x(0)=0$.)
2. Find a solution to the system of linear equations

$$
\begin{aligned}
& 4 x_{1}+16 x_{2}=4 \\
& 3 x_{1}+13 x_{2}=4
\end{aligned}
$$

Solution: Subtracting the second equation from the first yields the system

$$
\begin{aligned}
x_{1}+3 x_{2} & =0 \\
3 x_{1}+13 x_{2} & =4
\end{aligned}
$$

then subtracting the first equation from the second three times yields

$$
\begin{aligned}
x_{1}+3 x_{2} & =0 \\
4 x_{2} & =4 .
\end{aligned}
$$

Thus, $x_{2}=1$, and plugging back into the first equation, we obtain $x_{1}+3=0$, that is, $x_{1}=-3$.

