Quiz 4 Solution

1.Find a solution to the vector equation

$$
x_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
4 \\
3
\end{array}\right]=\left[\begin{array}{l}
6 \\
5
\end{array}\right] .
$$

Solution: The augmented matrix of the corresponding system of linear equations is

$$
\left[\begin{array}{lll}
2 & 4 & 6 \\
1 & 3 & 5
\end{array}\right]
$$

Applying row operations, we may reduce the matrix as follows:

$$
\left[\begin{array}{lll}
2 & 4 & 6 \\
1 & 3 & 5
\end{array}\right] \sim_{1}\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right] \sim_{2}\left[\begin{array}{ccc}
1 & 3 & 5 \\
0 & -2 & -4
\end{array}\right] \sim_{3}\left[\begin{array}{lll}
1 & 3 & 5 \\
0 & 1 & 2
\end{array}\right] \sim_{4}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right]
$$

(where
$\sim_{1}=$ swapping the rows,
$\sim_{2}=$ subtracting the first row from the second 2 times,
$\sim_{3}=$ dividing the second row by -2 ,
$\sim_{4}=$ subtracting the second row from the first 3 times). From the final form of the equation, we see that the (unique) solution is

$$
x_{1}=-1, \quad x_{2}=2 .
$$

2. Determine whether the vectors

$$
\left[\begin{array}{c}
-1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{c}
3 \\
6 \\
11
\end{array}\right]
$$

are linearly independent or not, and justify.
Solution: To decide whether the three vectors above are linearly independent is the same as to decide whether the vector equation

$$
x_{1}\left[\begin{array}{c}
-1 \tag{1}\\
2 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right]+x_{3}\left[\begin{array}{c}
3 \\
6 \\
11
\end{array}\right]=0
$$

has a non-trivial solution, i.e. a solution $\left(x_{1}, x_{2}, x_{3}\right)$ different from $(0,0,0)$. So the task really is to describe the solutions of the system of homogeneous linear equations with matrix

$$
\left[\begin{array}{ccc}
-1 & 2 & 3 \\
2 & -1 & 6 \\
3 & -1 & 11
\end{array}\right]
$$

By row operations, we may reduce the matrix as follows:

$$
\left[\begin{array}{ccc}
-1 & 2 & 3 \\
2 & -1 & 6 \\
3 & -1 & 11
\end{array}\right] \sim_{0}\left[\begin{array}{ccc}
1 & -2 & -3 \\
2 & -1 & 6 \\
3 & -1 & 11
\end{array}\right] \sim_{1}\left[\begin{array}{ccc}
1 & -2 & -3 \\
0 & 3 & 12 \\
3 & -1 & 11
\end{array}\right] \sim_{2}\left[\begin{array}{ccc}
1 & -2 & -3 \\
0 & 3 & 12 \\
0 & 5 & 20
\end{array}\right] \sim_{3}
$$

$$
\sim_{3}\left[\begin{array}{ccc}
1 & -2 & -3 \\
0 & 1 & 4 \\
0 & 5 & 20
\end{array}\right] \sim_{4}\left[\begin{array}{ccc}
1 & -2 & -3 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right] \sim_{5}\left[\begin{array}{ccc}
1 & 0 & 5 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right]
$$

(where
$\sim_{0}=$ multiplying the first row by (-1),
$\sim_{1}=$ subtracting the first row from the second 2 times,
$\sim_{2}=$ subtracting the first row from the third 3 times,
$\sim_{3}=$ dividing the second row by 3 ,
$\sim_{4}=$ subtracting the second row from the third 5 times,
$\sim_{5}=$ adding the second row to the first 2 times).
The pivot columns are only columns 1 and 2 , which means that x_{3} is a free variable. That is, the original vector equation has non-trivial solutions, hence the given set of vectors is not linearly independent.

Remark for completeness: the solutions $\left(x_{1}, x_{2}, x_{3}\right)$ of the equation (1) are all triples of the form

$$
\left(-5 x_{3},-4 x_{3}, x_{3}\right)
$$

