Quiz 5 Solution

1. Decide whether the vector \mathbf{b} is in the range of the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$, where

$$
\mathbf{b}=\left[\begin{array}{l}
2 \\
2 \\
5
\end{array}\right], \quad A=\left[\begin{array}{cc}
1 & -3 \\
1 & 1 \\
2 & -2
\end{array}\right]
$$

Solution: The question is whether there is a vector \mathbf{x} such that $A \mathbf{x}=\mathbf{b}$. That is, we want to decide whether the matrix equation

$$
\left[\begin{array}{cc}
1 & -3 \\
1 & 1 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
5
\end{array}\right]
$$

has a solution $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. By row reduction of the augmented matrix for the system, we obtain:

$$
\left[\begin{array}{cc|c}
1 & -3 & 2 \\
1 & 1 & 2 \\
2 & -2 & 5
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -3 & 2 \\
0 & 4 & 0 \\
2 & -2 & 5
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -3 & 2 \\
0 & 4 & 0 \\
0 & 4 & 1
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -3 & 2 \\
0 & 1 & 0 \\
0 & 4 & 1
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -3 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

We see from the last row that the given matrix equation does not have any solution. Thus, the conclusion is that \mathbf{b} is not in range of the transformation T.
2. Compute the product:

$$
\left[\begin{array}{cc}
1 & 2 \\
-1 & 1 \\
2 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
-3 & 4 \\
2 & 1
\end{array}\right]
$$

Solution:

$$
\left[\begin{array}{cc}
1 & 2 \\
-1 & 1 \\
2 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
-3 & 4 \\
2 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 \cdot(-3)+2 \cdot 2 & 1 \cdot 4+2 \cdot 1 \\
(-1) \cdot(-3)+1 \cdot 2 & (-1) \cdot 4+1 \cdot 1 \\
2 \cdot(-3)+0 \cdot 2 & 2 \cdot 4+0 \cdot 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 6 \\
5 & -3 \\
-6 & 8
\end{array}\right] .
$$

