Quiz 6 Solution

1. Compute the determinant

0	3	-1	
5	2	4	
1	4	-2	

Solution: We know several methods of computation, and probably most people have seen the direct computation of 3×3 determinants before. So let us do it by row operations instead. First, switching two consecutive rows changes sign of the determinant, so we get

0	3	-1		0	3	-1		1	4	-2	
5	2	4	= -	1	4	-2	=	0	3	-1	
1	4	-2		5	2	4		5	2	4	

Next, subtracting a multiple of a row from another does not change the determinant. So we have

1	4	-2		1	4	-2		1	4	-2	
0	3	-1	=	0	3	-1	=	0	3	-1	
5	2	4		0	-18	14		0	0	8	

Finally, a determinant of a matrix in its upper-triangular form is the product of its diagonal entries (this is a good rule to remember). So the determinant in the end is $1 \cdot 3 \cdot 8 = 24$.

2. Is the set of vectors

$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| 2x - 3y + 2z = 3 \right\}$$

a vector subspace of \mathbb{R}^3 ? (Justify your answer!)

Solution: W is not a vector subspace of \mathbb{R}^3 . Any vector subspace of \mathbb{R}^3 has to contain the zero vector $\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$. But since

$$2 \cdot 0 - 3 \cdot 0 + 2 \cdot 0 = 0 \neq 3,$$

the vector $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$ is not in W.