Quiz 6 Solution

1. Compute the determinant

$$
\left|\begin{array}{ccc}
0 & 3 & -1 \\
5 & 2 & 4 \\
1 & 4 & -2
\end{array}\right|
$$

Solution: We know several methods of computation, and probably most people have seen the direct computation of 3×3 determinants before. So let us do it by row operations instead. First, switching two consecutive rows changes sign of the determinant, so we get

$$
\left|\begin{array}{ccc}
0 & 3 & -1 \\
5 & 2 & 4 \\
1 & 4 & -2
\end{array}\right|=-\left|\begin{array}{ccc}
0 & 3 & -1 \\
1 & 4 & -2 \\
5 & 2 & 4
\end{array}\right|=\left|\begin{array}{ccc}
1 & 4 & -2 \\
0 & 3 & -1 \\
5 & 2 & 4
\end{array}\right| .
$$

Next, subtracting a multiple of a row from another does not change the determinant. So we have

$$
\left|\begin{array}{ccc}
1 & 4 & -2 \\
0 & 3 & -1 \\
5 & 2 & 4
\end{array}\right|=\left|\begin{array}{ccc}
1 & 4 & -2 \\
0 & 3 & -1 \\
0 & -18 & 14
\end{array}\right|=\left|\begin{array}{ccc}
1 & 4 & -2 \\
0 & 3 & -1 \\
0 & 0 & 8
\end{array}\right|
$$

Finally, a determinant of a matrix in its upper-triangular form is the product of its diagonal entries (this is a good rule to remember). So the determinant in the end is $1 \cdot 3 \cdot 8=24$.
2. Is the set of vectors

$$
W=\left\{\left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \right\rvert\, 2 x-3 y+2 z=3\right\}
$$

a vector subspace of \mathbb{R}^{3} ? (Justify your answer!)
Solution: W is not a vector subspace of \mathbb{R}^{3}. Any vector subspace of \mathbb{R}^{3} has to contain the zero vector $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. But since

$$
2 \cdot 0-3 \cdot 0+2 \cdot 0=0 \neq 3
$$

the vector $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ is not in W.

