Quiz 7 Solution

1.Find the dimension of the subspace of \mathbb{R}^{3} spanned by the vectors

$$
\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
6
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]
$$

Solution: "Dimension of the column space does not change with row operations," so to find the dimension, we may row reduce the matrix whose columns are the given vectors:

$$
\left[\begin{array}{ccc}
1 & -1 & 3 \\
2 & 3 & 1 \\
4 & 6 & 2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -1 & 3 \\
0 & 5 & -5 \\
0 & 10 & -10
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -1 & 3 \\
0 & 5 & -5 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -1 & 3 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

We see that the dimension fo the column space of the resulting matrix is 2 (e.g. because it has 2 pivot columns), so the dimension of the original subspace is also 2 .
2. Find a basis of the space of all solutions of the equation

$$
3 x-2 y+6 z=0
$$

Solution: We can rewrite the equation as

$$
x-\frac{2}{3} y+2 z=0
$$

From this, we see that x is (can be taken as) the one pivot variable and the remaining variables y, z are free. That is, choosing $y=r, z=s$ as parameters for the solutions, the set of solutions is of the form

$$
\left\{\left.\left[\begin{array}{c}
\frac{2}{3} r-2 s \\
r \\
s
\end{array}\right] \right\rvert\, r, s \in \mathbb{R}\right\}=\left\{\left.r\left[\begin{array}{c}
\frac{2}{3} \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right] \right\rvert\, r, s \in \mathbb{R}\right\}
$$

From this, we see that a basis for the set of solutions is $\left\{\left[\begin{array}{c}\frac{2}{3} \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]\right\}$.

