Quiz 7 Solution

1. Find the dimension of the subspace of \mathbb{R}^3 spanned by the vectors

$$\begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} -1\\3\\6 \end{bmatrix}, \begin{bmatrix} 3\\1\\2 \end{bmatrix}.$$

Solution: "Dimension of the column space does not change with row operations," so to find the dimension, we may row reduce the matrix whose columns are the given vectors:

[1	-1	3		[1	-1	3]		[1	-1	3]		[1	$^{-1}$	3		[1	0	2	
2	3	1	\sim	0	5	-5	\sim	0	5	-5	\sim	0	1	$^{-1}$	\sim	0	1	-1	
4	6	2		0	10	$3 \\ -5 \\ -10$		0	0	0		0	0	0		0	0	0	

We see that the dimension fo the column space of the resulting matrix is 2 (e.g. because it has 2 pivot columns), so the dimension of the original subspace is also 2.

2. Find a basis of the space of all solutions of the equation

$$3x - 2y + 6z = 0$$

Solution: We can rewrite the equation as

$$x - \frac{2}{3}y + 2z = 0.$$

From this, we see that x is (can be taken as) the one pivot variable and the remaining variables y, z are free. That is, choosing y = r, z = s as parameters for the solutions, the set of solutions is of the form

$$\left(\begin{bmatrix}\frac{2}{3}r-2s\\r\\s\end{bmatrix}\middle|r,s\in\mathbb{R}\right\} = \left\{r\begin{bmatrix}\frac{2}{3}\\1\\0\end{bmatrix}+s\begin{bmatrix}-2\\0\\1\end{bmatrix}\middle|r,s\in\mathbb{R}\right\}.$$

From this, we see that a basis for the set of solutions is $\left\{ \begin{bmatrix} 2\\3\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\0\\1 \end{bmatrix} \right\}$.