Quiz 8 Solution

1. Find the rank of the matrix

$$
\left[\begin{array}{ccc}
1 & 2 & 1 \\
3 & 0 & 5 \\
5 & -2 & 9 \\
2 & -2 & 4
\end{array}\right] .
$$

Solution: By row operations we get

$$
\left[\begin{array}{ccc}
1 & 2 & 1 \\
3 & 0 & 5 \\
5 & -2 & 9 \\
2 & -2 & 4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & -6 & 2 \\
0 & -12 & 4 \\
0 & -6 & 2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & -6 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & -\frac{1}{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We see that the matrix has two pivot columns, hence the rank of the matrix is 2 .
2. Find all eigenvalues of the matrix

$$
\left[\begin{array}{ll}
-2 & 2 \\
-2 & 3
\end{array}\right]
$$

Solution: We have to compute the characteristic polynomial $(\operatorname{det}(A-\lambda I)$ where A is our matrix) and find its roots. We have

$$
\left|\begin{array}{cc}
-2-\lambda & 2 \\
-2 & 3-\lambda
\end{array}\right|=(-2-\lambda)(3-\lambda)-2(-2)=\lambda^{2}-\lambda-2
$$

The quadratic equation

$$
\lambda^{2}-\lambda-2=0
$$

has the roots given by the standard formula,

$$
\lambda_{1,2}=\frac{1 \pm \sqrt{1-4(-2)}}{2}=\frac{1 \pm 3}{2}
$$

Thus, the eigenvalues are $\lambda_{1}=-1$ and $\lambda_{2}=2$.

