Quiz 9 Solution

1.Find the general solution to the equation

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

Solution: The auxiliary equation is

$$
\begin{aligned}
\lambda^{2}-2 \lambda-3 & =0 \\
(\lambda-3)(\lambda+1) & =0
\end{aligned}
$$

and so we see that it has two distinct roots $\lambda_{1}=3, \lambda_{2}=-1$.
Thus, the general solution to the equation is of the form

$$
y=c_{1} e^{3 t}+c_{2} e^{(-1) t}=c_{1} e^{3 t}+c_{2} e^{-t} .
$$

2. Use the method of undetemined coefficients to find a solution to the equation

$$
y^{\prime \prime}-2 y^{\prime}+y=t
$$

Solution: The right-hand side is of the form $t=t e^{0 t}$. After checking that 0 (coefficient in the exponential) is not a root of the auxilliary equation $\left(\lambda^{2}-2 \lambda+1=0\right)$, we conclude that we are looking for a solution of the form

$$
y_{p}=(A+B t) e^{0 t}=A+B t .
$$

What remains is to determine the coefficients A, B. We have

$$
\begin{aligned}
& y_{p}^{\prime}=B, \\
& y_{p}^{\prime \prime}=0
\end{aligned}
$$

Pluggin into the equation, we obtain

$$
\begin{aligned}
0-2 B+(A+B t) & =t \\
(A-2 B)+B t & =t
\end{aligned}
$$

Comparing the constant terms and the coefficients by t, we deduce

$$
\begin{aligned}
(A-2 B) & =0 \\
B & =1,
\end{aligned}
$$

so we obtain the coefficients $B=1$ and $A=2$. Thus we obtained a solution

$$
y_{p}(t)=2+t
$$

