MA 16010 Lesson 10: Quotient rule & other trig functions Recal: Last time we discussed the product rule:

$$\frac{\mathrm{d}}{\mathrm{d}x} \big[f(x) \cdot g(x) \big] =$$

Using the product rule, one can derive the quotient rule as follows:

$$g(x) \cdot \frac{f(x)}{g(x)} = f(x)$$

Quotient rule: $\frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{f(x)}{g(x)} \right] =$

Exercise: Compute y'(x) when $y = \frac{x^2 + 3x + 1}{x - 4}$.

Exercise: Compute $y'(\pi)$ when $y = \frac{3\cos(x) - 3\sin(x)}{\sin(x) + \cos(x)}$.

Exercise: Compute the derivative of $y = \frac{3x-a}{4x^2+a^2}$ where a is a constant.

Exercise (derivatives of the remaining trig. functions). Use the quotient rule to compute the derivatives

1. We have $\tan(x) =$, therefore $(\tan(x))' =$

2. We have $\cot(x) =$, therefore

 $(\cot(x))' =$

3. We have $\sec(x) =$, therefore

 $(\sec(x))' =$

4. We have $\csc(x) =$, therefore

 $(\csc(x))' =$

Summary – derivatives of trigonometric functions.

Exercise: Compute the equation of the tangent line to $y = 3x^2 \sec(x)$ at $x = \pi/3$.