MA 16010 Lesson 10: Quotient rule \& other trig functions
Recal: Last time we discussed the product rule:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[f(x) \cdot g(x)]=
$$

Using the product rule, one can derive the quotient rule as follows:

$$
g(x) \cdot \frac{f(x)}{g(x)}=f(x)
$$

Quotient rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{f(x)}{g(x)}\right]=$

Exercise: Compute $y^{\prime}(x)$ when $y=\frac{x^{2}+3 x+1}{x-4}$.

Exercise: Compute $y^{\prime}(\pi)$ when $y=\frac{3 \cos (x)-3 \sin (x)}{\sin (x)+\cos (x)}$.

Exercise: Compute the derivative of $y=\frac{3 x-a}{4 x^{2}+a^{2}}$ where a is a constant.

Exercise (derivatives of the remaining trig. functions). Use the quotient rule to compute the derivatives

1. We have $\tan (x)=$, therefore

$$
(\tan (x))^{\prime}=
$$

2. We have $\cot (x)=$, therefore

$$
(\cot (x))^{\prime}=
$$

3. We have $\sec (x)=$

$$
(\sec (x))^{\prime}=
$$

4. We have $\csc (x)=$

$$
(\csc (x))^{\prime}=
$$

, therefore
, therefore

Summary - derivatives of trigonometric functions.

$$
\begin{aligned}
& (\sin (x))^{\prime}= \\
& (\tan (x))^{\prime}= \\
& (\sec (x))^{\prime}=
\end{aligned}
$$

Exercise: Compute the equation of the tangent line to $y=3 x^{2} \sec (x)$ at $x=\pi / 3$.

