MA 16010 Lesson 11: Chain rule I

Recall (composition of functions): Given two functions f(x) and g(x),

their composition is the function y =_____.

Question for today: How to compute the derivative of a composite function in terms of the original functions?

Example: Compute the derivative of $h(x) = (x + \sin(x))^3$. We have h(x) = f(g(x)) where f(x) =_____ (so f'(x) =_____), and g(x) =_____ (so g'(x) =_____).

Using product rule (slow, complicated):

Chain rule: $\frac{\mathrm{d}}{\mathrm{d}x}[f(g(x))] =$

Exercise: Compute y'(x) when $y = (x^{100} + 4)^{1000}$.

Another way to remember the chain rule:

Consider functions y = f(u) and u = g(x). We may consider y = f(g(x)) to be the composite function. Then

$$\frac{\mathrm{d}y}{\mathrm{d}x} =$$

Exercise: Use the chain rule to compute h'(x) when:

 $h(x) = (\cos(x) + \tan(x))^{-5}$:

 $h(x) = \sqrt[3]{x^7 + 8}$:

$$h(x) = \left(\frac{3x}{x+5}\right)^8:$$

Exercise: Compute $h'(\ln(\pi))$ for

$$h(x) = \cos(e^x + \pi/2).$$

Exercise: Compute the derivative h'(x) for

$$h(x) = e^{200x}$$

using the chain rule in two different ways.