MA 16010 Lesson 11: Chain rule I

Recall (composition of functions): Given two functions $f(x)$ and $g(x)$, their composition is the function $y=$ \qquad .

Question for today: How to compute the derivative of a composite function in terms of the original functions?

Example: Compute the derivative of $h(x)=(x+\sin (x))^{3}$.
We have $h(x)=f(g(x))$ where $f(x)=$ \qquad (so $f^{\prime}(x)=$ __ $)$,

$$
\text { and } g(x)=\ldots \quad \text { (so } g^{\prime}(x)=\ldots \text {). }
$$

Using product rule (slow, complicated):

Chain rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x}[f(g(x))]=$
Exercise: Compute $y^{\prime}(x)$ when $y=\left(x^{100}+4\right)^{1000}$.

Another way to remember the chain rule:

Consider functions $y=f(u)$ and $u=g(x)$. We may consider $y=f(g(x))$ to be the composite function. Then

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=
$$

Exercise: Use the chain rule to compute $h^{\prime}(x)$ when:
$h(x)=(\cos (x)+\tan (x))^{-5}:$
$h(x)=\sqrt[3]{x^{7}+8}:$
$h(x)=\left(\frac{3 x}{x+5}\right)^{8}:$

Exercise: Compute $h^{\prime}(\ln (\pi))$ for

$$
h(x)=\cos \left(e^{x}+\pi / 2\right) .
$$

Exercise: Compute the derivative $h^{\prime}(x)$ for

$$
h(x)=e^{200 x}
$$

using the chain rule in two different ways.

