MA 16010 Lesson 12: Chain rule II & logarithm

Recall (chain rule): Given two functions y = f(u) and u = g(x), for their composition y = f(g(x)) we have

$$y'(x) =$$
 , or $\frac{\mathrm{d}y}{\mathrm{d}x} =$

Today we compute some more complicated derivatives, using all our rules.

•

Exercise: Compute the derivative of $h(x) = (3x - 4)^4 (x^3 - 5)^2$.

Exercise: Compute the derivative of $h(x) = \frac{\sqrt{16-x^2}}{3x}$ at x = 1.

Exercise: Compute the derivative of $h(x) = e^{5x} \cot(7x)$.

Derivative of the natural logarithm. We can use the chain rule to figure out what is the derivate of $y = \ln(x)$:

 $e^{\ln(x)} =$

•

Summary:
$$\frac{\mathrm{d}}{\mathrm{d}x} \Big[\ln(x) \Big] =$$

Exercise: Compute y'(2) when $y = \ln(x^3 + 3x)$.

Exercise: Compute y'(x) when $y = \cos(2x^2 + 5)\ln(33x)$.

Exercise: Compute h'(x) when $h(x) = 5^x$.

Exercise: The position of a particle moving on a straight line is given by

$$s(t) = \frac{50t}{(30+2t^2)^2}$$

(in meters, where t is time in seconds). What is the velocity of the particle at t = 4 seconds? Round your answer to 3 decimal places.