MA 16010 Lesson 13: Higher order derivatives

Given a function $f(x)$, its derivative $f^{\prime}(x)$ is yet another function. Taking the derivative of this function yields \qquad . other notation:

We can continue in this manner, to obtain other higher order derivatives:

--
-

Exercise: Compute $f^{\prime \prime}(x)$ for $f(x)=x^{4}+3 x^{2}+1$.

Exercise: Compute $f^{\prime \prime}(-1)$ for $f(x)=x^{2} e^{x}$.

Exercise: Compute the third derivative of $f(x)=\sin (3 x)$.

Exercise: Compute the second derivative of $y=\ln \left(x^{2}+1\right)$.

Application: motion. Recall that if $s(t)$ is the function of a position of an object depending on time, its rate of change $s^{\prime}(t)$ is \qquad . Similarly, if one takes the rate of change of the velocity, $v^{\prime}(t)$, one obtains

Altogether, we have:

Exercise: The position of a particle moving on a straight line is given by

$$
s(t)=\sin (2 t)+7 t^{2}
$$

(in meters, where t is time in seconds). What is the acceleration of the particle at $t=5$ seconds? Round your answer to 3 decimal places.

Exercise: The velocity of a particle moving on a straight line is given by

$$
v(t)=3 t^{2}-3
$$

(in meters per second, where t is time in seconds). What is the acceleration of the particle at $t=2$ seconds?

