MA 16010 Lesson 14: Implicit Differentiation

Explicit vs. Implicit functions. A function in explicit form is what we considered so far. It is given by an equation of the form:

A function in implicit form is given by a more general equation involving x and y. We still think of $y=y(x)$ as a function of x.

Example: The function $y(x)$ given by the equation

$$
x+3 y=6
$$

is in implicit form. The explicit form of the function is:

Example: The function $y(x)$ given by the equation

$$
x^{2}+y^{2}=4
$$

is in implicit form. The explicit form of the function is:
either \qquad , or \qquad (two functions!)

Implicit differentiation. Sometimes it is not easy/possible to find explicit form out of implicit one, but we can still take the derivative $\frac{\mathrm{d}}{\mathrm{d} x}$.

Idea: Differentiate both sides of the equation with respect to x. Treat y as a function of x, and use the chain rule wherevew appropriate, i.e.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[h(y)]=
$$

In the end, solve for y^{\prime}.

Exercise: Using implicit differentiation, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when

$$
4 x^{3}+2 x y^{2}=3 y^{3}-7 y x^{2} .
$$

Exercise: Using implicit differentiation, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when

$$
\cos (3 x+2 y)=5 x^{2} y .
$$

Exercise: Using implicit differentiation, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when

$$
3 \cot \left(\frac{x}{y}\right)=5 x .
$$

Exercise: Find the slope of the tangent line to $3 x^{2}+2 y^{2}=14$ at $(2,1)$.

Exercise: Find the equation of the tangent line to $6 \sqrt{x}+4 \sqrt{y}=5$ at $(x, y)=(1 / 4,1 / 4)$.

