MA 16010 Lesson 15: Related rates I

Before last time: Functions in explicit form $y=f(x)$, such as

$$
y=x^{2} .
$$

Last time: Functions in implicit form. For example,

$$
y^{2}+3 x y=x^{2}+y
$$

but $y=y(x)$ is "secretly" a function of x.
Today: We consider again general equations such as

$$
y^{2}+3 x y=x^{2}+y
$$

but this time both $x=x(t)$ and $y=y(t)$ are "secretly" a function of a third variable t.

Similarly as with implicit derivatives, we can then relate the derivatives $x^{\prime}=\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $y^{\prime}=\frac{\mathrm{d} y}{\mathrm{~d} t}$. (Their rates of change will be related.)
Example: A particle is moving on a circle of radius 5 centered at the origin. Its position (x, y) in the $x y$-plane therefore always satisfies the equation

When it passes through the point $(2,3) x$-coordinate changes at the rate $\frac{\mathrm{d} x}{\mathrm{~d} t}=3$ (units/second). What is the rate of change of the y-coordinate, $\frac{\mathrm{d} y}{\mathrm{~d} t}$?

Summary (finding related rates): Take the derivative on both sides of the equation with respect to t. This time, use the chain rule/implicit differentiation for both $x=x(t)$ and $y=y(t)$. That is,

$$
\frac{\mathrm{d}}{\mathrm{~d} t}[g(x)]=\quad, \quad \frac{\mathrm{d}}{\mathrm{~d} t}[h(y)]=
$$

In the end, one gets an equation involving $x, y, x^{\prime}=\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $y^{\prime}=\frac{\mathrm{d} y}{\mathrm{~d} t}$. Plug in the ones that you know, and solve for the one you are trying to find.

Exercise: A radius of a circle is growing at the rate of 3 meters per second at the time when its radius is $r=5 \mathrm{~m}$. What this the rate of change of the area of the circle at that moment?

Exercise: A water tank has a shape of a cylinder, with radius of the base 50 cm . Water escapes through a hole at the bottom of the tank at the rate $19 \mathrm{~cm}^{3} / \mathrm{s}$. At what rate is the water level decreasing?

Exercise: A water tank has a shape of a cone (pointing down), and the diameter fo the tank is equal to its altitude. Water escapes through a hole at the bottom of the tank at the rate $25 \mathrm{~cm}^{3} / \mathrm{s}$. When the water level is 125 cm , at what rate is the water level decreasing?

