Given a function $y=f(x)$, we are often interested in its maximal value (e.g. "maximize profit") or its minimal value ("minimize costs"), if such values exist.

Today: We focus on relative maxima/minima.

- For a function $y=f(x)$ and a number c, we say that c is the point of rel. maximum of $f / f(c)$ is a relative maximum if:

Examples:

- For a function $y=f(x)$ and a number c, we say that c is the point of rel. minimum of $f / f(c)$ is a relative minimum if:

Examples:

- A number c is a critical number (critical point) of $y=f(x)$ if:

Examples:

Exercise: Find all relative extrema c, and describe $f^{\prime}(c)$ at these points.

How to find relative extrema "analytically"?
Key observation: Relative minima, maxima are critical points \rightarrow we find the critical points instead.

(Warning:

How to find critical points:

Exercise: Find the critical numbers for the following functions.
(a) $y=x^{3}-24 x+15$:
(b) $y=2 x^{3}+6 x^{2}+6 x+1$:
(c) $y=x^{4}-4 x^{3}+4 x^{2}-5$:

Exercise: Find the critical numbers for the following functions.
(a) $y=x^{2}-\frac{3}{x^{2}}$:
(b) $y=3 x^{3} e^{2 x+1}$:
(c) $y=\sin (2 x)-4 x, \quad$ only in the interval $(0, \pi):$

