MA 16010 Lesson 17: Relative extrema, critical numbers

Given a function y = f(x), we are often interested in its **maximal value** (e.g. "maximize profit") or its **minimal value** ("minimize costs"), if such values exist.

Today: We focus on relative maxima/minima.

• For a function y = f(x) and a number c, we say that c is the point of rel. maximum of f / f(c) is a relative maximum if:

Examples:

For a function y = f(x) and a number c, we say that c is the point of rel. minimum of f / f(c) is a relative minimum if:

Examples:

• A number c is a **critical number** (critical point) of y = f(x) if:

Examples:

Exercise: Find all relative extrema c, and describe f'(c) at these points.

How to find relative extrema "analytically"?

Key observation: Relative minima, maxima are critical points \rightarrow we find the critical points instead.

(Warning:

)

How to find critical points:

- •
- •
- •

Exercise: Find the critical numbers for the following functions.

(a)
$$y = x^3 - 24x + 15$$
:

(b)
$$y = 2x^3 + 6x^2 + 6x + 1$$
:

(c)
$$y = x^4 - 4x^3 + 4x^2 - 5$$
:

Exercise: Find the critical numbers for the following functions.

(a)
$$y = x^2 - \frac{3}{x^2}$$
 :

(b)
$$y = 3x^3e^{2x+1}$$
:

(c)
$$y = \sin(2x) - 4x$$
, only in the interval $(0, \pi)$: