MA 16010 Lesson 18: Incrasing \& decreasing, first derivative test
Observation: Recall that the derivative of a function $y=f(x)$ has the meaning of rate of change of f. Therefore:
(A) If $f^{\prime}(x)>0$ on an interval I, then f is \qquad in I.
(B) If $f^{\prime}(x)<0$ on an interval I, then f is \qquad in I.

Application for relative extrema:

How to tell if a critical point is rel. maximum/rel. minimum?

- If c is the point of rel. maximum of f, then f is \qquad on some interval (a, c), \qquad on some interval (c, b).
- If c is the point of rel. minimum of f, then f is \qquad on some interval (a, c), \qquad on some interval (c, b).

Idea: Based on where $f^{\prime}(x)<0$ and where $f^{\prime}(x)>0$, determine which type of rel. extreme we are dealing with.

First derivative test: Given a critical point c of $f(x)$:

$$
\text { if } \ldots \quad \text { then } \ldots
$$

$f^{\prime}(x)>0$ on the left, $f^{\prime}(x)<0$ on the right, \qquad at c
$f^{\prime}(x)>0$ on the left, $f^{\prime}(x)>0$ on the right, \qquad at c
$f^{\prime}(x)>0$ on the left, $f^{\prime}(x)>0$ on the right, \qquad at c
$f^{\prime}(x)<0$ on the left, $f^{\prime}(x)<0$ on the right, \qquad at c

Strategy for relative extrema:

1.
2.
3.

Exercise: Find the rel. extrema of $f(x)=-2 x^{3}+3 x^{2}+12 x+5$.

Exercise: The derivative of a function $f(x)$ is $f^{\prime}(x)=e^{3 x}\left(x^{3}+x^{2}-6 x\right)$. Find the points of relative minima and maxima of $f(x)$.

Exercise: The critical points of $f(x)=2 \cos (2 x)+2 x$ on $(0,2 \pi)$ are:

$$
x=\frac{\pi}{12}, x=\frac{5 \pi}{12}, x=\frac{13 \pi}{12}, x=\frac{17 \pi}{12} .
$$

Find the x-values in $(0,2 \pi)$ at which $f(x)$ has a relative maximum.

