MA 16010 Lesson 19: Concavity, inflection pts, 2nd derivative test

Recall:

(A) If $f^{\prime}(x)>0$ on an interval I, then f is \qquad in I.
(B) If $f^{\prime}(x)<0$ on an interval I, then f is \qquad in I.

Now let's go one step further:
(A') $f^{\prime \prime}(x)>0$ on $I \Rightarrow$ \qquad ; then f is \qquad on I.
(B') $f^{\prime \prime}(x)<0$ on $I \Rightarrow$ \qquad ; then f is \qquad on I.

Example: Find the largest intervals where $f(x)=x^{3}-3 x^{2}+7 x+1$ is concave up and concave down.

A point (x, y) where $y=f(x)$ changes from concave up to concave down or vice versa is called \qquad .
To find such points is to find \qquad of $f^{\prime}(x)$!

Exercise: Find the largest intervals on which the function

$$
f(x)=\frac{x^{4}}{3}+\frac{2}{3} x^{3}-4 x^{2}+x+1
$$

is concave up or concave down, and find the inflection points.

Summary - inflection points.

1.
2.
3.

Exercise: Find the largest intervals on which the function

$$
f(x)=5 \ln \left(x^{2}+4\right)
$$

is: (a) concave up or concave down, and find the inflection points.
(b) concave up and increasing (at the same time).

We may use concavity in finding relative extrema. If x is a point of: (a) rel. max., then f is typically \qquad , so we expect \qquad .
(b) rel. min., then f is typically \qquad , so we expect \qquad .

Second derivative test: Let x be a critical point of $y=f(x)$.

1. If $f^{\prime \prime}(x)<0$, then \qquad .
2. If $f^{\prime \prime}(x)>0$, then \qquad .
3. In other cases, the test is inconclusive!

Exercise: Find the rel. extrema of $f(x)=\frac{2}{3} x^{3}-x^{2}-12 x+5$.

