MA 16010 Lesson 1: Precalculus review

Exponentiation. For numbers a, b, we consider a^{b} either
when \qquad or \qquad .

Examples:

Properties of exponentiation:

An exponential function is a function of the form $f(x)=$ \qquad . The
"best one" is the natural exponential function $f(x)=$ \qquad , where
\qquad -

Exercise: Simplify the following expressions:
$e^{5} e^{-3}=$
$\left(e^{-2 x}\right)^{5}=$
$\frac{e^{4 x} e^{3}}{e^{7 x}}=$

Logarithm. The function $f(x)=\ln (x)$ is defined as \qquad . It is called the (natural) logarithm function.

The domain of $\ln (x)$ is \qquad .

Properties of logarithm:

.
-
\bullet
\bullet

Exercise: Simplify the following expressions:

$$
\begin{aligned}
& \ln (3 x)+\ln (5)= \\
& \ln (5 x)-\frac{1}{3} \ln (y)= \\
& \ln \left(e^{3 x}\right)= \\
& e^{x \ln (5)}=
\end{aligned}
$$

Exercise: Find all solutions to the equation: $\quad \ln \left(2 x^{2}\right)=10$.

Trigonometric functions.

Given a right triange with an angle θ, adjacent side of length a, opposite side of length o and hypotenuse of length h, we have
$\sin (\theta)=$
, $\cos (\theta)=$
, $\tan (\theta)=$
$\sec (\theta)=$
, $\csc (\theta)=$
, $\quad \cot (\theta)=$
.

In general, we allow arbitrary angle θ. Graphically, we have:

Some useful formulas:

Exercise (standard values). Fill out the table below.

θ	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
$\sin (\theta)$					
$\cos (\theta)$					
$\tan (\theta)$					

Exercise: Given that θ is in the fourth quadrant and $\cos (\theta)=4 / 5$, find the exact value of $\sec (\theta), \sin (\theta)$ and $\tan (\theta)$.

