MA 16010 Lesson 1: Precalculus review

Exponentiation. For numbers a, b, we consider a^b either

when ______ or ______.

Examples:

Properties of exponentiation:

- •
- •
- •
- •
- •

An exponential function is a function of the form f(x) = _____. The "best one" is the natural exponential function f(x) = _____, where

Exercise: Simplify the following expressions:

 $e^5 e^{-3} =$ $(e^{-2x})^5 =$

 $\frac{e^{4x}e^3}{e^{7x}} =$

Logarithm. The function $f(x) = \ln(x)$ is defined as _____

_____. It is called the (natural) logarithm function.

The domain of $\ln(x)$ is _____.

Properties of logarithm:

- •
- •
- -
- •

Exercise: Simplify the following expressions:

$$\ln(3x) + \ln(5) =$$
$$\ln(5x) - \frac{1}{3}\ln(y) =$$
$$\ln(e^{3x}) =$$

 $e^{x\ln(5)} =$

Exercise: Find all solutions to the equation: $\ln(2x^2) = 10$.

Trigonometric functions.

Given a right triange with an angle θ , adjacent side of length a, opposite side of length o and hypotenuse of length h, we have

$\sin(\theta) = \underline{\qquad},$	$\cos(\theta) = \underline{\qquad},$	$\tan(\theta) = \underline{\qquad},$
$\sec(\theta) = $,	$\csc(\theta) = $,	$\cot(\theta) = $

In general, we allow arbitrary angle θ . Graphically, we have:

Some useful formulas:

- •
- •
- •

θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
$\sin(\theta)$					
$\cos(\theta)$					
$\tan(\theta)$					

Exercise (standard values). Fill out the table below.

Exercise: Given that θ is in the fourth quadrant and $\cos(\theta) = 4/5$, find the exact value of $\sec(\theta)$, $\sin(\theta)$ and $\tan(\theta)$.