MA 16010 Lesson 21: Properties of f from f^{\prime} (graphically)

Recall: We may find the following information about a function $y=f(x)$ in terms of $f^{\prime}(x)$:

Critical numbers of f :
Where f is increasing:
Where f is decreasing:
Point of relative maximum of f :

Point of relative minimum of f :

Where f is concave up:

Where f is concave down:

Where f has inflection point (x-coordinate):
\rightarrow From the graph of f^{\prime}, we can tell a lot about f.

Exercise: Given the graph of $f^{\prime}(x)$ below, find the following about $f(x)$:

Critical numbers:

Increasing intervals:

Decreasing intervals:

Relative maxima of f occur at $x=$
Relative minima of f occur at $x=$

Concave up intervals:

Concave down intervals:

Inflection points (x-coordinate):

Exercise: Given the graph of $f^{\prime}(x)$ below, find the following about $f(x)$:

Critical numbers:

Increasing intervals:

Decreasing intervals:

Relative maxima of f occur at $x=$

Relative minima of f occur at $x=$

Concave up intervals:

Concave down intervals:

Inflection points (x-coordinate):

Exercise: Given the graph of $f^{\prime}(x)$ below, find the following about $f(x)$:

Critical numbers:

Increasing intervals:

Decreasing intervals:

Relative maxima of f occur at $x=$

Relative minima of f occur at $x=$

Concave up intervals:

Concave down intervals:

Inflection points (x-coordinate):

Exercise: Given the graph of $f^{\prime}(x)$ below, find the following about $f(x)$:

Critical numbers:

Increasing intervals:

Decreasing intervals:

Relative maxima of f occur at $x=$

Relative minima of f occur at $x=$

Concave up intervals:
Concave down intervals:

Inflection points (x-coordinate):

