Recall: The expression

$$\lim_{x \to c} f(x) = \infty$$

has the meaning:

"As x ______, the value f(x) ______."

Example: $\lim_{x \to 0} \frac{1}{x^2} =$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)							

Now we switch it around: The expression

$$\lim_{x \to \infty} f(x) = c$$

has the meaning:

"As x ______, the value f(x) ______."

Example: $\lim_{x \to \infty} \frac{1}{\sqrt{x}} =$

x	100	10000	1000000	100000000	
f(x)					

Similarly:

- We may also consider $\lim_{x \to -\infty} f(x)$:
- It may happen that $\lim_{x\to\infty} f(x) = \infty$, $\lim_{x\to\infty} f(x) = -\infty$ etc.

Limits at $\pm \infty$ of rational functions:

• We may use the same computational fules for limits as before:

$$\lim_{x \to \infty} \left(f(x) + g(x) \right) = \left(\lim_{x \to \infty} f(x) \right) + \left(\lim_{x \to \infty} g(x) \right),$$
$$\lim_{x \to \infty} \left(f(x)/g(x) \right) = \left(\lim_{x \to \infty} f(x) \right) / \left(\lim_{x \to \infty} g(x) \right), \text{ etc.}$$

• Useful observation: if c is a constant and a is a positive exponent, then

$$\lim_{x \to \infty} \frac{c}{x^a} = 0,$$

$$\lim_{x \to -\infty} \frac{c}{x^a} = 0$$
, if it makes sense, e.g. if *a* is positive

Example:

$$\lim_{x \to -\infty} \left(\frac{3}{x} + \frac{x}{5}\right) =$$

Example:

$$\lim_{x \to \infty} \frac{3x^3 + 7x^2 - 10x + 5}{x^2 + 8x - 6} =$$

General rule:

Example:

$$\lim_{x \to -\infty} \frac{5x^2 + 3 - 2x^4}{8x - 3x^4 - 1} =$$

Asymptotes. An asymptote of f(x) is a line such that the graph of f(x) tends to this line. Asymptotes can be

1. Vertical: x = c is an asymptote for f(x) if:

in practice:

- 2. Horizontal: y = c is an asymptote for f(x) if:
- 3. Slant: y = ax + b is an asymptote for f(x) if:

in practice:

Example: Find horizontal, vertical, slant asymptotes of

$$f(x) = \frac{2x^2 - 7x - 6}{3x^2 - 12}$$

•

Example: Find horizontal, vertical, slant asymptotes of

$$f(x) = \frac{x^3 - 7x - 6}{x^2 + x - 2} \quad .$$