Recall: The expression

$$
\lim _{x \rightarrow c} f(x)=\infty
$$

has the meaning:
"As x \qquad , the value $f(x)$ \qquad ."

Example: $\quad \lim _{x \rightarrow 0} \frac{1}{x^{2}}=$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$				-			

Now we switch it around: The expression

$$
\lim _{x \rightarrow \infty} f(x)=c
$$

has the meaning:
"As x \qquad , the value $f(x)$ \qquad ."

Example: $\quad \lim _{x \rightarrow \infty} \frac{1}{\sqrt{x}}=$

x	100	10000	1000000	100000000	\ldots
$f(x)$					\ldots

Similarly:

- We may also consider $\lim _{x \rightarrow-\infty} f(x)$:
- It may happen that $\lim _{x \rightarrow \infty} f(x)=\infty, \lim _{x \rightarrow \infty} f(x)=-\infty$ etc.

Limits at $\pm \infty$ of rational functions:

- We may use the same computational fules for limits as before:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}(f(x)+g(x))=\left(\lim _{x \rightarrow \infty} f(x)\right)+\left(\lim _{x \rightarrow \infty} g(x)\right) \\
& \lim _{x \rightarrow \infty}(f(x) / g(x))=\left(\lim _{x \rightarrow \infty} f(x)\right) /\left(\lim _{x \rightarrow \infty} g(x)\right), \text { etc. }
\end{aligned}
$$

- Useful observation: if c is a constant and a is a positive exponent, then

$$
\lim _{x \rightarrow \infty} \frac{c}{x^{a}}=0
$$

$\lim _{x \rightarrow-\infty} \frac{c}{x^{a}}=0$, if it makes sense, e.g. if a is positive

Example:

$\lim _{x \rightarrow-\infty}\left(\frac{3}{x}+\frac{x}{5}\right)=$

Example:

$\lim _{x \rightarrow \infty} \frac{3 x^{3}+7 x^{2}-10 x+5}{x^{2}+8 x-6}=$

General rule:

Example:

$\lim _{x \rightarrow-\infty} \frac{5 x^{2}+3-2 x^{4}}{8 x-3 x^{4}-1}=$

Asymptotes. An asymptote of $f(x)$ is a line such that the graph of $f(x)$ tends to this line. Asymptotes can be

1. Vertical: $x=c$ is an asymptote for $f(x)$ if:
in practice:
2. Horizontal: $y=c$ is an asymptote for $f(x)$ if:
3. Slant: $y=a x+b$ is an asymptote for $f(x)$ if:
in practice:
Example: Find horizontal, vertical, slant asymptotes of

$$
f(x)=\frac{2 x^{2}-7 x-6}{3 x^{2}-12} .
$$

Example: Find horizontal, vertical, slant asymptotes of

$$
f(x)=\frac{x^{3}-7 x-6}{x^{2}+x-2} .
$$

