Example: If $f(x)=3 x^{2}+x$ is the derivative of a function $F(x)$, then $F(x)=$

In general, $F(x)=$

Antiderivatives. An antiderivative of a function $f(x)$ is a function $F(x)$ such that:

An antiderivative is determined only up to an additive constant. When $F(x)$ is an antiderivative of $f(x)$, we write:

We also call $F(x)$ \qquad , and the process of finding it \qquad .

Rules for integration. We can reverse engineer rules for antiderivatives from those for derivatives:

- Additivity, constant multiples:
- (Product and chain rule: MA26200, "int. by parts," "substitution")
- Constant rule:
- Power rule:

- Antiderivatives of other functions:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}[\sin (x)]=\cos (x) & \rightsquigarrow \int \cos (x) \mathrm{d} x= \\
\frac{\mathrm{d}}{\mathrm{~d} x}[\cos (x)]=-\sin (x) & \rightsquigarrow \int \sin (x) \mathrm{d} x= \\
\frac{\mathrm{d}}{\mathrm{~d} x}[\ln (x)]=\frac{1}{x}, x>0 & \rightsquigarrow \int \frac{1}{x} \mathrm{~d} x= \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left[e^{x}\right]=e^{x} & \rightsquigarrow \int e^{x} \mathrm{~d} x= \\
\frac{\mathrm{d}}{\mathrm{~d} x}[\tan (x)]=\sec ^{2}(x) & \rightsquigarrow \int \sec ^{2}(x) \mathrm{d} x= \\
\frac{\mathrm{d}}{\mathrm{~d} x}[\cot (x)]=-\csc ^{2}(x) & \rightsquigarrow \int \csc ^{2}(x) \mathrm{d} x= \\
\frac{\mathrm{d}}{\mathrm{~d} x}[\sec (x)]=\sec (x) \tan (x) & \rightsquigarrow \int \sec ^{2}(x) \tan (x) \mathrm{d} x= \\
\frac{\mathrm{d}}{\mathrm{~d} x}[\csc (x)]=-\csc ^{2}(x) \cot (x) & \rightsquigarrow \int \csc ^{2}(x) \cot (x) \mathrm{d} x=
\end{aligned}
$$

Exercise: Compute
(a) $\int \frac{4 x^{3}+\sqrt[5]{x^{3}}}{x} \mathrm{~d} x=$

Exercise (cont.): Compute
(b) $\int \sec (x)(3 \cos (x)-5 \tan (x)) \mathrm{d} x=$
(c) $\int(x-2)^{2} \mathrm{~d} x=$
(d) $\int \frac{2-3 x e^{x}+\pi x \sin (x)}{x} \mathrm{~d} x=$

