MA 16010 Lesson 27: Antiderivatives I

Example: If $f(x) = 3x^2 + x$ is the derivative of a function F(x), then F(x) =

In general, F(x) =

Antiderivatives. An antiderivative of a function f(x) is a function F(x) such that:

An antiderivative is determined only up to an additive constant. When F(x) is an antiderivative of f(x), we write:

We also call I	F(x)	_, and the process
of finding it _		

Rules for integration. We can reverse engineer rules for antiderivatives from those for derivatives:

• Additivity, constant multiples:

- (Product and chain rule: MA26200, "int. by parts," "substitution")
- Constant rule:
- Power rule:

• Antiderivatives of other functions:

 $\frac{\mathrm{d}}{\mathrm{d}x} \left[\sin(x) \right] = \cos(x) \qquad \qquad \rightsquigarrow \quad \int \cos(x) \, \mathrm{d}x =$ $\frac{\mathrm{d}}{\mathrm{d}x} \Big[\cos(x) \Big] = -\sin(x) \qquad \quad \rightsquigarrow \quad \int \sin(x) \, \mathrm{d}x =$ $\rightsquigarrow \int \frac{1}{x} \, \mathrm{d}x =$ $\frac{\mathrm{d}}{\mathrm{d}x} \left[\ln(x) \right] = \frac{1}{x}, \, x > 0$ $\rightsquigarrow \int e^x \, \mathrm{d}x =$ $\frac{\mathrm{d}}{\mathrm{d}x} \left[e^x \right] = e^x$ $\frac{\mathrm{d}}{\mathrm{d}x} \Big[\tan(x) \Big] = \sec^2(x) \qquad \qquad \rightsquigarrow \quad \int \sec^2(x) \, \mathrm{d}x =$ $\frac{\mathrm{d}}{\mathrm{d}x} \Big[\cot(x) \Big] = -\csc^2(x) \qquad \rightsquigarrow \quad \int \csc^2(x) \, \mathrm{d}x =$ $\frac{\mathrm{d}}{\mathrm{d}x} \Big[\sec(x) \Big] = \sec(x) \tan(x) \quad \rightsquigarrow \quad \int \sec(x) \tan(x) \, \mathrm{d}x =$ $\frac{\mathrm{d}}{\mathrm{d}x} \Big[\csc(x) \Big] = -\csc(x) \cot(x) \quad \rightsquigarrow \quad \int \csc(x) \cot(x) \, \mathrm{d}x =$

Exercise: Compute

(a)
$$\int \frac{4x^3 + \sqrt[5]{x^3}}{x} \, \mathrm{d}x =$$

Exercise (cont.): Compute

(b)
$$\int \sec(x) \left(3\cos(x) - 5\tan(x) \right) dx =$$

(c)
$$\int (x-2)^2 \, \mathrm{d}x =$$

(d)
$$\int \frac{2 - 3xe^x + \pi x \sin(x)}{x} \, \mathrm{d}x =$$