A differential equation (in x and y) is an equation relating $x, y=y(x)$, and the derivatives $y^{\prime}, y^{\prime \prime}, \ldots$

Examples:

1) $y^{\prime}=3 x+5$,
2) $2 \cos (x)+y^{\prime \prime}=1$,
3) $3 x^{2} y^{\prime}-2 x y=x^{3 / 2} \quad($ more complicated - Calc 2$), \ldots$

Exercise: Find the general solution to the equations 1) and 2) above.

To pinpoint one particular solution, one can specify an additional value of y (and y^{\prime} for example) at a point. This is called an initial value problem. To solve them:

Exercise: Solve the initial value problem

$$
y^{\prime}=5-4 x, \quad y(2)=5
$$

Exercise: Given that $y=y(x)$ satisfies

$$
y^{\prime \prime}=3 e^{x}-2, \quad y^{\prime}(0)=4, \quad y(0)=8,
$$

find $y(2)$.

Exercise: The rate of change $\mathrm{d} P / \mathrm{d} t$ of a population of rabbits is proportional to the square root of t with proportionality constant 4 , where P is the population size and t is the time that passed from the present moment (in months). If the initial size of the population is 500 , find the (approximate) population after 5 months.

