MA 16010 Lesson 29: Area and Riemann Sums

Sigma notation. We use " Σ " to write sums of bunch of terms succintly.

For example,
$$\sum_{i=1}^{4} i^2 =$$

Exercise: Evaluate

$$\sum_{i=2}^{5} (-1)^{i} (i-1)$$

$$\sum_{i=0}^{4} \frac{\sqrt{i}}{i+1}$$

Exercise: Use the Σ -notation to write down the sum

$$(\sqrt{3}-2)^2 + (\sqrt{4}-3)^2 + (\sqrt{5}-4)^2 + \dots + (\sqrt{n+2}-n-1)^2$$

$$=\sum_{i=1}^{n}$$

Area under the curve. For a function y = f(x), we want to compute/ /estimate the (signed) area under the curve over a given interval [a, b]: To approximate the area, we use **Riemann sums** =

Let's say we use n such rectangles $(n = $ in the picture above	e).
The base of each one has length $\Delta x =$	
The height of each rectangle is:	
For the left Riemann sums , it is	
For the right Riemann sums , it is	
The area of one rectangle is therefore	;
and the approximation of the overall area therefore is:	

(Left R.S.) (Right R.S.)

Exercise: Use the left and right Riemann sums with 4 rectangles to estimate the (signed) area under the curve of

$$y = \sqrt[3]{x+2}$$

on the interval [1, 9]. (Round your answers to two decimal places.)

Exercise: Use the left and right Riemann sums with 100 rectangles to estimate the (signed) area under the curve of

$$y = e^x + 1$$

on the interval [0, 10]. (Write answers with the sigma notation.)