Sigma notation. We use " Σ " to write sums of bunch of terms succintly.

For example, $\quad \sum_{i=1}^{4} i^{2}=$

Exercise: Evaluate

$$
\begin{aligned}
& \sum_{i=2}^{5}(-1)^{i}(i-1) \\
& \sum_{i=0}^{4} \frac{\sqrt{i}}{i+1}
\end{aligned}
$$

Exercise: Use the Σ-notation to write down the sum

$$
\begin{aligned}
& (\sqrt{3}-2)^{2}+(\sqrt{4}-3)^{2}+(\sqrt{5}-4)^{2}+\cdots+(\sqrt{n+2}-n-1)^{2} \\
= & \sum_{i=1}^{n}
\end{aligned}
$$

Area under the curve. For a function $y=f(x)$, we want to compute/ /estimate the (signed) area under the curve over a given interval $[a, b]$:

To approximate the area, we use Riemann sums $=$

Let's say we use n such rectangles ($n=\quad$ in the picture above).
The base of each one has length $\Delta x=$ \qquad

The height of each rectangle is:
For the left Riemann sums, it is \qquad .

For the right Riemann sums, it is \qquad .

The area of one rectangle is therefore \qquad , and the approximation of the overall area therefore is:

Exercise: Use the left and right Riemann sums with 4 rectangles to estimate the (signed) area under the curve of

$$
y=\sqrt[3]{x+2}
$$

on the interval $[1,9]$. (Round your answers to two decimal places.)

Exercise: Use the left and right Riemann sums with 100 rectangles to estimate the (signed) area under the curve of

$$
y=e^{x}+1
$$

on the interval $[0,10]$. (Write answers with the sigma notation.)

