MA 16010 Lesson 2: Limits Numerically

Limits.

Example. The function

$$
f(x)=\frac{x^{2}-4}{x-2}
$$

is not defined at $x=2: f(2)=$
We still wish to understand how the function behaves at least near $x=2$. Let us list some values of $f(x)$ near $x=2$:

x	1.9	1.99	1.999	2	2.001	2.01	2.1
$f(x)$				-			

We observe that as x approaches 2 , the value $f(x)$ approaches \qquad .

We say that \qquad is the limit of $f(x)=\frac{x^{2}-4}{x-2}$ as x approaches 2 , also written as:

In general: We say that L is the limit of $f(x)$ as x approaches (a given number) c if \qquad .

We write this fact as

$$
\lim _{x \rightarrow c} f(x)=L
$$

Infinite limits: We can have $L=\infty$ or $L=-\infty$ in the above.

- $\lim _{x \rightarrow c} f(x)=\infty$ means: \qquad .
- $\lim _{x \rightarrow c} f(x)=-\infty$ means: \qquad .

Exercise: List the indicated values, rounded to 4 decimal places, and determine the indicated limit:

$$
f(x)=\frac{\sin (x)}{x}
$$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$				-			

$\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=$

Exercise: List the indicated values, rounded to 4 decimal places, and determine the indicated limit:

$$
f(x)=2+\frac{4}{(x+3)^{2}}
$$

x	-3.1	-3.01	-3.001	-3	-2.999	-2.99	-2.9
$f(x)$				-			

$\lim _{x \rightarrow-3}\left(2+\frac{4}{(x+3)^{2}}\right)=$

One-sided limits.

Example. Consider the function

$$
f(x)=\frac{x^{2}}{2 x-2}
$$

and its behaviour near $x=1$.

x	0.9	0.99	0.999	1	1.001	1.01	1.1
$f(x)$				-			

Does $\lim _{x \rightarrow 1} f(x)$ exist?
What can be said:

- As x approaches 1 from the left / from below, $f(x)$ approaches \qquad .

We say that the left-sided limit of $f(x)$ as x approaches 1 (from the left) is equal to \qquad . We also write:

- As x approaches 1 from the right / from above, $f(x)$ approaches \qquad .

We say that the right-sided limit of $f(x)$ as x approaches 1 (from the left) is equal to \qquad . We also write:

In general: We say that L is the limit of $f(x)$ as x approaches (a given number) c from the left / from the right if $f(z)$ tends to L as x approaches c from the left / from the right. We write this also as

$$
\lim _{x \rightarrow c^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{+}} f(x)=L, \text { resp. }
$$

Relation to "both-sided limits": $\lim _{x \rightarrow c} f(x)$ exists and equals L if and only if:

Exercise: List the indicated values, rounded to 4 decimal places, and determine the indicated limit:

$$
f(x)=\frac{x+2}{x^{2}-2 x-8}
$$

x	4	4.0001	4.001	4.01	4.1
$f(x)$	-				

$\lim _{x \rightarrow 4^{+}} \frac{x+2}{x^{2}-2 x-8}=$

Exercise: List the indicated values, rounded to 4 decimal places, and determine the indicated limits:

$$
f(x)=\frac{|x|}{x}
$$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$				-			

$\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=$
$\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=$
$\lim _{x \rightarrow 0} \frac{|x|}{x}=$

