Limits.

Example. The function

$$f(x) = \frac{x^2 - 4}{x - 2}$$

is not defined at x = 2: f(2) =

We still wish to understand how the function behaves at least *near* x = 2. Let us list some values of f(x) near x = 2:

x	1.9	1.99	1.999	2	2.001	2.01	2.1
f(x)							

We observe that as x approaches 2, the value f(x) approaches _____.

We say that _____ is the *limit of* $f(x) = \frac{x^2-4}{x-2}$ as x approaches 2, also written as:

In general: We say that L is the limit of f(x) as x approaches (a given

number) c if _____

We write this fact as

$$\lim_{x \to c} f(x) = L \quad .$$

Infinite limits: We can have $L = \infty$ or $L = -\infty$ in the above.

- $\lim_{x \to c} f(x) = \infty$ means: _____.
- $\lim_{x \to c} f(x) = -\infty$ means: _____.

Exercise: List the indicated values, rounded to 4 decimal places, and determine the indicated limit:

$$f(x) = \frac{\sin(x)}{x}$$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)							

 $\lim_{x \to 0} \frac{\sin(x)}{x} =$

Exercise: List the indicated values, rounded to 4 decimal places, and determine the indicated limit:

$$f(x) = 2 + \frac{4}{(x+3)^2}$$

x	-3.1	-3.01	-3.001	-3	-2.999	-2.99	-2.9
$\int f(x)$							

$$\lim_{x \to -3} \left(2 + \frac{4}{(x+3)^2} \right) =$$

One-sided limits. Example. Consider the function

$$f(x) = \frac{x^2}{2x - 2}$$

and its behaviour near x = 1.

x	0.9	0.99	0.999	1	1.001	1.01	1.1
f(x)							

Does $\lim_{x \to 1} f(x)$ exist?

What can be said:

• As x approaches 1 from the left / from below, f(x) approaches _

We say that the left-sided limit of f(x) as x approaches 1 (from the

left) is equal to _____. We also write:

• As x approaches 1 from the right / from above, f(x) approaches _____.

We say that the right-sided limit of f(x) as x approaches 1 (from the left) is equal to _____. We also write:

In general: We say that L is the limit of f(x) as x approaches (a given number) c from the left / from the right if f(z) tends to L as x approaches c from the left / from the right. We write this also as

$$\lim_{x \to c^-} f(x) = L \quad \text{and} \quad \lim_{x \to c^+} f(x) = L, \text{ resp.}$$

Relation to "both-sided limits": $\lim_{x\to c} f(x)$ exists and equals L if and only if:

Exercise: List the indicated values, rounded to 4 decimal places, and determine the indicated limit:

$$f(x) = \frac{x+2}{x^2 - 2x - 8}$$

x	4	4.0001	4.001	4.01	4.1
f(x)					

 $\lim_{x \to 4^+} \tfrac{x+2}{x^2 - 2x - 8} =$

Exercise: List the indicated values, rounded to 4 decimal places, and determine the indicated limits:

$$f(x) = \frac{|x|}{x}$$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)							

 $\lim_{x \to 0^{-}} \frac{|x|}{x} =$ $\lim_{x \to 0^{+}} \frac{|x|}{x} =$ $\lim_{x \to 0} \frac{|x|}{x} =$