MA 16010 Lesson 30: Definite Integrals I

Recall: To approximate the signed area under the curve $y=f(x)$, over the interval $[a, b]$, we used left/right Riemann sums
$L_{n}=$
$R_{n}=$
As we increase n, the area is approximated better and better; to get the area precisely, we \qquad .
$\int_{a}^{b} f(x) \mathrm{d} x=$

We can use geometric meaning of areas to "compute definite integrals".
Exercise: Evaluate $\quad \int_{-1}^{2} 2 x \mathrm{~d} x \quad$ (by using geometric formulas).

Exercise: Evaluate $\int_{2}^{7}-3 \mathrm{~d} x \quad$ (by using geometric formulas).

Exercise: Evaluate $\quad \int_{1}^{4}(x+2) \mathrm{d} x \quad$ (by using geometric formulas).

Exercise: Find the definite integral that expresses the (signed) area of the region sketched below.

Exercise: Find the definite integral that expresses the (signed) area of the region sketched below.

