Recall: To approximate the signed area under the curve y = f(x), over the interval [a, b], we used **left/right Riemann sums**

$$L_n = R_n =$$

As we increase n, the area is approximated better and better; to get

the area precisely, we _____

$$\int_{a}^{b} f(x) \mathrm{d}x =$$

We can use geometric meaning of areas to "compute definite integrals".

Exercise: Evaluate $\int_{-1}^{2} 2x \, dx$ (by using geometric formulas).

Exercise: Evaluate $\int_2^7 -3 \, dx$ (by using geometric formulas).

Exercise: Evaluate $\int_{1}^{4} (x+2) dx$ (by using geometric formulas).

Exercise: Find the definite integral that expresses the (signed) area of the region sketched below.

Exercise: Find the definite integral that expresses the (signed) area of the region sketched below.

