Recall: If $y=f(x)$ is a function, we consider

1) the definite integral $\int_{a}^{b} f(x) \mathrm{d} x$:

- the result is

2) the indefinite integral $\int f(x) \mathrm{d} x$:

- the result is

Fundamental Theorem of Calculus relates the two integrals:
If $\left(f(x)\right.$ is continuous on $[a, b]$ and $\int f(x) \mathrm{d} x=F(x)+C$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x=
$$

\rightsquigarrow it gives a practical method to compute definite integrals.
Example. Let us compute $\int_{1}^{3}\left(2 x^{3}+3\right) \mathrm{d} x$:

Exercise: Compute the following definite integrals.
(a) $\int_{1}^{4} \frac{x^{2}+\sqrt[3]{x^{2}}}{\sqrt[3]{x}} \mathrm{~d} x$:
(b) $\int_{0}^{5}\left(3 e^{x}-8\right) \mathrm{d} x$:
(c) $\int_{2}^{3} \frac{x+1}{x^{2}} \mathrm{~d} x$:

Exercise: Find the area of the region enclosed by the curves given by the equations

$$
y=2 \sin (x), \quad y=0, \quad x=\frac{\pi}{4}, \quad x=\frac{\pi}{2} .
$$

