MA 16010 Lesson 34: Numerical integration

Sometimes it is not practical/possible to evaluate integrals "analytically".

Examples:

$$
\begin{aligned}
& \int \frac{\ln (1+t)}{(1+t)^{2}} \mathrm{~d} t \\
& \int e^{x^{2}} \mathrm{~d} x
\end{aligned}
$$

\rightsquigarrow in practice, one often uses numerical methods/approximations to evaluate definite integrals.

Numerical method that we have seen already is the method of left/right Remann sums:

An improvement upon this is the Trapezoidal Rule:

Recall: How to compute the area of a trapezoid:

In the case of trapezoids from the previous picture, we get:

Altogether, the approximation of the integral is:

Example:

(A) Using the Trapezoidal Rule with 4 trapezoids, approximate the integral $\int_{2}^{10}\left(x^{2}-1\right) \mathrm{d} x$.
(B) Compute the integral precisely and compare:

Exercise: Using the Trapezoidal Rule with $n=3$, approximate the integral $\int_{0}^{9}\left(e^{x^{2}}-1\right) \mathrm{d} x$.

Exercise: Using the Trapezoidal Rule with $n=5$, approximate the area of the shaded region below.

