Recall: A differential equation is an equation involving $t, y=y(t), y^{\prime}, y^{\prime \prime} \ldots$

Today we consider equations of the form

$$
\begin{equation*}
y^{\prime}=k y \quad(k \text { is a constant }) . \tag{*}
\end{equation*}
$$

Observe/recall:

The general solution to the equation (*) is:

Exercise: Solve the initial value problem

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=3 y, \quad y(0)=15 .
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=6 y, \quad y(6)=20, \quad \text { find } y(10)
$$

Exponential growth model:

Exercise: The population of a culture of bacteria, $P(t)$, where t is time in days, is growing at a rate proportional to the population. The growth rate is 0.3 . If the initial population is $P(0)=1000$,
(a) how big is the population after 10 days?
(b) how long will it take for the population to double?

Exercise: John currently has $\$ 8000$ on a savings account at Bank A. On his account, the interest is compounded continuously, with the annual rate of interest 4.5%.
(a) How much will be in the account after 9 years? Round to nearest cent.
(b) John also has $\$ 10000$ on an account at Bank B, also compounded continuously. The bank guarantees that this amount will grow to $\$ 12500$ after 7 years. What is the annual interest rate?

