MA 16010 Lesson 3: Limits Graphically

Recall:
$\lim _{x \rightarrow c^{-}} f(x)=$
$\lim _{x \rightarrow c^{+}} f(x)=$
$\lim _{x \rightarrow c} f(x)=$ \qquad
How do limits (roughly) look like?
Example (finite limit - from last time). Consider

$$
f(x)=\frac{x^{2}-4}{x-2}, \quad \lim _{x \rightarrow 2} f(x)=?
$$

Example (infinite limit - from last time). Consider

$$
f(x)=2+\frac{4}{(x+3)^{2}}, \quad, \quad \lim _{x \rightarrow-3} f(x)=?
$$

Example (one-sided limits - from last time). Consider

$$
f(x)=\frac{|x|}{x}, \quad, \quad \lim _{x \rightarrow 0^{-}} f(x), \lim _{x \rightarrow 0^{+}} f(x)=?
$$

How to tell limits from the graph.
We want to find $\lim _{x \rightarrow c} f(x)$ based on the graph $y=f(x)$.
1 . Locate c at the x-axis.
2. Look at x that approach c on the left or right, and locate their corresponding y-values.
3. Assuming it exists, $\lim _{x \rightarrow c} f(x)$ is the y-value around which the y-values from step 2. accumulate.

Exercise: Based on the sketch of the graph $y=f(x)$ below, find $\lim _{x \rightarrow c^{-}} f(x)$, $\lim _{x \rightarrow c^{+}} f(x), \lim _{x \rightarrow c} f(x)$ and $f(c)$ for all c from the following list: $-3,-1,0,2,5$. (In case some of the items do not exist, indicate that too.)

