MA 16010 Lesson 6: The Derivative

Recall (slopes of linear functions).

The slope of a linear function $f(x)=a x+b$ is the number \qquad .
Meaning of slope:

Meaning of slope geometrically:

The derivative. For a function $y=f(z)$, we want to be able to:

- Find the tangent line too its graph at a given point x,
- In particular, find the slope of tangent line: This is called

How to find the derivative (using limits).

slope of the secant line $=$

As h gets smaller and smaller, the secant line approaches the tangent line. Therefore

Definition. The derivative of $f(x)$ at x is defined as

Example (derivative from definition step by step):
Compute the slope of the tangent line of $f(x)=5 x^{2}-2 x+8$ at general x :

- $f(x+h)=$
- $f(x+h)-f(x)=$
- $\frac{f(x+h)-f(x)}{h}=$
- $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=$

Example:

Compute $f^{\prime}(x)$ for $f(x)=\frac{3}{4 x+1}$:

Example:

Find $f^{\prime}(3)$ when $f(x)=x^{2}+7$:

Example:

Find the equation of the tangent line to the graph of $f(x)=\frac{3}{x^{2}+1}$ at $x=2$:

